refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 50 results
Sort by

Filters

Technology

Platform

accession-icon GSE59237
TSLP effects on primary human blood dendritic cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The ontogeny of human Langerhans cells (LCs) remains poorly characterized, in particular the nature of LC precursors and the factors that may drive LC differentiation. Through a systematic transcriptomic analysis of TSLP-activated dendritic cells (DCs), we unexpectedly identified markers that have been associated with a skin-homing potential as well as with a LC phenotype. We performed transcriptomic analysis of TSLP-activated blood DCs, as compared to freshly purified, Medium-, and TNF-activated DCs. Among TSLP up-regulated genes, we identified molecules associated with skin homing, LC phenotype, and LC function, as determined by a literature-based survey. Conversely, genes not expressed in LCs were not found among TSLP-induced genes. Further experiments showed that TGF- synergized with TSLP leading to the differentiation of blood BDCA-1+ DCs into bona fide Birbeck granule-positive LCs.

Publication Title

Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-β.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6246
Gene expression profiling: breast cancer formation in WAP-SVT/t transgenic animals
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Microarray studies revealed that as a first hit, SV40 T/t-antigen causes deregulation of 462 genes in mammary gland cells (ME-cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell-proliferation specific and Rb-E2F dependent, causing ME-cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells, a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture, breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal-ME-cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal-ME-cells. The profile of retransformants shows that only 38 deregulated genes appear to be tumor-relevant and that none of them is considered to be a typical breast cancer gene.

Publication Title

Gene expression profiling: cell cycle deregulation and aneuploidy do not cause breast cancer formation in WAP-SVT/t transgenic animals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20504
Human umbilical cord blood-derived endothelial colony forming cells under serum-free conditions
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Derivation and expansion of human umbilical cord blood-derived endothelial colony forming cells under serum-free conditions - a transcriptome analysis.

Publication Title

Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57915
The combinatorial code governing cellular responses to complex stimuli
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Integration of multiple signals shapes cell adaptation to their microenvironment through synergistic and antagonistic interactions. The combinatorial complexity governing signal integration for multiple cellular output responses has not been resolved. For outputs measured in the conditions 0 (control), signals X, Y, X+Y, combinatorial analysis revealed 82 possible interaction profiles, which we biologically assimilated to 5 positive, and 5 negative interaction modes. To experimentally validate their use in living cells, we designed an original computational workflow, and applied it to transcriptomics data of innate immune cells integrating physiopathological signal combinations. Up to 9 of the 10 defined modes coexisted in context-dependent proportions. Each integration mode was enriched in specific molecular pathways, suggesting a coupling between genes involved in particular functions, and the corresponding mode of integration. We propose that multimodality and functional coupling are general principles underlying the systems level integration of physiopathological and pharmacological stimuli by mammalian cells.

Publication Title

Combinatorial code governing cellular responses to complex stimuli.

Sample Metadata Fields

Time

View Samples
accession-icon GSE16485
Expression data from macaque taste buds and lingual epithelium
  • organism-icon Macaca fascicularis
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Efforts to unravel the mechanisms underlying taste sensation (gustation) have largely focused on rodents. The first comprehensive database of gene expression in primate (Macaca fascicularis) taste buds is presented. This database provides a foundation for further studies in diverse aspects of taste biology. A taste bud gene expression database was generated using laser capture microdissection (LCM) of tissue freeze medium OTC embedded macaque tongue tissue blocks. We collected fungiform (FG) taste buds at the front of the tongue, circumvallate (CV) taste buds at the back of the tongue, as well as non-gustatory lingual epithelium (LE). Gene expression was also analyzed in the top and bottom portions of CV taste buds collected using LCM. Samples were collected from 10 animals - 7 female, 3 male.

Publication Title

Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE4386
Transcriptomics in cardiac surgery
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Anesthetic gases elicit organ protection in patients undergoing coronary artery bypass graft (CABG) surgery. This study aimed at identifying myocardial transcriptional phenotypes and anesthetic-induced changes in gene expression to predict cardiovascular biomarkers and cardiac function after off-pump CABG.

Publication Title

Gene regulatory control of myocardial energy metabolism predicts postoperative cardiac function in patients undergoing off-pump coronary artery bypass graft surgery: inhalational versus intravenous anesthetics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22139
Bone morphogenetic protein-7 is a MYC target with pro-survival functions in childhood medulloblastoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Medulloblastoma (MB) is the most common malignant brain tumor in children, among whom overexpression or amplification of MYC oncogenes has been associated with poor clinical outcome. Although the MYC functions during normal development and oncogenesis in various systems have been extensively investigated, the transcriptional targets mediating MYC effects in MB are still elusive. Their identification and roles during MB onset and progression are important and will ultimately suggest novel potential therapeutic targets. cDNA microarray analysis was used to compare the effects of overexpressing and silencing MYC on the transcriptome of a MB-derived cell line. We identified 209 genes with potential relevance to MYC-dependent cellular responses in MB. Among the MYC-responsive genes, we found members of the bone morphogenetic protein (BMP) signaling pathway, which plays a crucial role during the development of the cerebellum. In particular, the cytokine gene BMP7 was identified as a direct target of MYC in MB cells. Similar to the effect induced by BMP7 silencing by siRNA, the use of a small-molecule inhibitor of the BMP/SMAD signaling pathway reduced cell viability in a panel of MB cells. Altogether, our findings indicate that high MYC levels drive BMP7 expression in MB to induce pro-survival and pro-proliferative cellular pathways. This observation suggests that targeting the BMP/SMAD pathway may be a new therapeutic concept for the treatment of childhood MB.

Publication Title

Bone morphogenetic protein-7 is a MYC target with prosurvival functions in childhood medulloblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE36279
Expression data from murine liver tissue upon depletion of regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Regulatory T cells (Treg) play a pivotal role in modulating immune responses and were shown to decrease atherosclerosis in murine models. How this effect is brought about remains elusive.

Publication Title

Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP168038
Bacterial sepsis triggers an antiviral response that causes translation shutdown
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

In response to viral pathogens, the host upregulates antiviral genes that suppress translation of viral mRNAs. However, induction of such antiviral responses may not be exclusive to viruses as the pathways lie at the intersection of broad inflammatory networks that can also be induced by bacterial pathogens. Using a model of Gram-negative sepsis, we show that propagation of kidney damage initiated by a bacterial origin ultimately involves antiviral responses that result in host translation shutdown. We determined that activation of the Eif2ak2-Eif2a axis is the key mediator of translation initiation block in late phase sepsis. Reversal of this axis mitigated kidney injury. Furthermore, temporal profiling of the kidney translatome revealed that multiple genes involved in formation of the initiation complex were translationally altered during bacterial sepsis. Collectively, our findings implicate that translation shutdown is indifferent to the specific initiating pathogen and is an important determinant of tissue injury in sepsis. Overall design: Bulk 20 um thickness specimens from cross-sectional human kidney biopsies embedded in OCT underwent RNA sequencing. All subjects had ATN, AIN, or a mix of both conditions.

Publication Title

Bacterial sepsis triggers an antiviral response that causes translation shutdown.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Subject

View Samples
accession-icon GSE39965
Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Distinct signal transduction pathways downstream of the (P)RR revealed by microarray and ChIP-chip analyses.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact