refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE66429
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66426
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Platelet reactivity (PR) in cardiovascular (CV) patients is variable between individuals and modulates clinical outcome. However, the determinants of platelet reactivity are largely unknown. Integration of data derived from high-throughput omics technologies may yield novel insights into the molecular mechanisms that govern platelet reactivity. The aim of this study was to identify candidate genes modulating platelet reactivity in aspirin-treated cardiovascular patients PR was assessed in 110 CV patients treated with aspirin 100mg/d by aggregometry using several agonists. 12 CV patients with extreme high or low PR were selected for transcriptomics, proteomics and miRNA analysis.

Publication Title

New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE151839
Obesity and Race Alter Gene Expression in Skin
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin/fat of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and race

Publication Title

Obesity and ethnicity alter gene expression in skin.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP070571
Pathogenicity of genomic duplications is determined by formation of novel chromatin domains (neo-TADs) (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Genome-scale methods have identified subchromosomal structures so-called topologically associated domains (TADs) that subdivide the genome into discrete regulatory units, establish with their target genes. By re-engineering human duplications at the SOX9 locus in mice combined with 4C-seq and Capture Hi-C experiments, we show that genomic duplications can result in the formation of novel chromatin domains (neo-TADs) and that this process determines their molecular pathology. Overall design: RNA-seq of embryonic limb buds for WT and mutant animals carrying structural variations at the Sox9/Kcnj locus.

Publication Title

Formation of new chromatin domains determines pathogenicity of genomic duplications.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE92466
Inherited human IRAK-1 deficiency selectively abolishes TLR signaling in fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We describe here a male infant with a 100 kb de novo Xq28 deletion encompassing parts of the TMEM187 and MECP2 protein-coding genes and the IRAK1 protein-coding gene, as well as the MIR3202-1, MIR3202-2, and MIR718 RNA-coding genes. We analyzed the impact of human IRAK-1 deficiency on a genome-wide gene expression in human fibroblasts in response to TLR2/6, TLR4 agonists as well as to IL-1 and TNF-, using primary fibroblasts from healthy controls and IRAK-4-, MyD88- and MECP2-deficient patients for comparison.

Publication Title

Inherited human IRAK-1 deficiency selectively impairs TLR signaling in fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact