refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 438 results
Sort by

Filters

Technology

Platform

accession-icon SRP202046
Single-cell transcriptomics of the embryonic mouse pancreas
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Data accompaning to van Gurp et al. Development 2019. single-cell sequencing of the developing mouse pancreas followed by Seurat analysis to discover genes important for alpha and beta cell differentiation. Overall design: Single-cells from mouse embryonic pancreas at E12.5, E13.5, E14.5, E15.5 and E18.5 were isolated and enriched for MIP-GFP and sorted into 384-well plates. Afterwards, SORT-seq was performed and single-cell transcriptomics profiles were obtained.

Publication Title

A transcriptomic roadmap to α- and β-cell differentiation in the embryonic pancreas.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP074299
A single-cell transcriptome atlas of the human pancreas
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, NextSeq 500

Description

To understand organ (dys)function it is important to have a complete inventory of its cell types and the corresponding markers that unambiguously identify these cell types. This is a challenging task, in particular in human tissues, because unique cell-type markers are typically unavailable, necessitating the analysis of complex cell type mixtures. Transcriptome-wide studies on pancreatic tissue are typically done on pooled islet material. To overcome this challenge we sequenced the transcriptome of thousands of single pancreatic cells from deceased organ donors with and without type 2 diabetes (T2D) allowing in silico purification of the different cell types. We identified the major pancreatic cell types resulting in the identification of many new cell-type specific and T2D-specific markers. Additionally we observed several subpopulations within the canonical pancreatic cell types, which we validated in situ. This resource will be useful for developing a deeper understanding of pancreatic biology and diabetes mellitus. Overall design: Human cadaveric pancreata were used to extract islets of Langerhans, which were kept in culture until single-cell dispersion and FACS sorting. Single-cell transcriptomics was performed on live cells from this mixture using CEL-seq or on cells stained for CD63, CD13, TGFBR3 or CD24 and CD44. The RaceID algorithm was used to identify clusters of cells corresponding to the major pancreatic cell types and to mine for novel cell type-specific genes as well as subpopulations within the known pancreatic cell types.

Publication Title

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP067892
Single-cell RNA-seq reveals distinct maturation stages of the Paneth cell lineage
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

Paneth cells (PCs) are long-lived secretory cells that reside at the bottoms of small intestinal crypts. Besides serving as niche cells for the neighboring Lgr5-positive stem cells, PCs secrete granules containing a broad spectrum of antimicrobial proteins, including lysozymes and defensins1. Here, we have used single-cell RNA sequencing to explore PC differentiation. We found a maturation gradient from early secretory progenitors to mature PCs, capturing the full maturation path of PCs. Moreover, differential expression of a subset of defensin genes in lysozyme-high PCs, e.g. Defa20, reveals at least two distinct stages of maturation. Overall design: We traced Lgr5+ stem cells from Lgr5-CreERT2 C57Bl6/J mice bred to a Rosa26LSL-YFP reporter mice and sorted YFP+ cells 5 days, 3 weeks and 8 weeks after tamoxifen injection.

Publication Title

De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP128458
Expansion of adult human pancreatic tissue yields organoids harbouring progenitor cells with endocrine differentiation potential
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Gene expression profiles from ALDH high cells sorted from expanded adult human pancreatic organoids are more similar to fetal pancreatic tissue and ALDH high cells sorted from expanded fetal human pancreatic organoids than to adult human islets or adult islet-depleted exocrine tissue. Overall design: RNA was isolated from ALDHhi cells sorted from organoids after 7 days expansion derived from human adult pancreatic tissue, ALDHhi cells sorted from organoids after 7 days expansion derived from human fetal pancreatic tissue, primary fetal pancreatic tissue, adult human islets from different donors and adult exocrine (islet-depleted) pancreatic tissue from different donors.

Publication Title

Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE31901
Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin resistant men. Design: In a single-blinded randomized crossover study, 10 insulin resistant men consumed three high-fat mixed-meals (2.6MJ). Meals were high in saturated FA (SFA), in monounsaturated FA (MUFA) or in polyunsaturated FA (PUFA). Fasting and postprandial skeletal muscle FA handling were examined by measuring arterio-venous concentration differences across forearm muscle. [2H2]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and FFA in the circulation and [U-13C]-palmitate was added to the meal to label chylomicron-TAG. Skeletal muscle biopsies were taken to assess intramuscular lipid metabolism and gene expression. Results: Insulin and glucose responses (AUC) after SFA meal were significantly higher compared with PUFA meal (p=0.003 and 0.028, respectively). Uptake of TAG-derived FA was significantly lower in the early postprandial phase after PUFA meal as compared with other meals (AUC60-120, p<0.001). The PUFA meal induced less transcriptional downregulation of oxidative pathways compared with other meals. The fractional synthetic rate was higher in DAG and PL fraction after MUFA and PUFA meal. Conclusion: Intake of a PUFA meal reduced TAG-derived skeletal muscle FA uptake, which was accompanied by higher postprandial insulin sensitivity and a tendency towards a higher muscle lipid turnover. These data suggest that the effects of replacement of SFA by PUFA may contribute to less muscle lipid uptake and may be therefore protective against the development of insulin resistance.

Publication Title

PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity.

Sample Metadata Fields

Sex, Age, Time

View Samples
accession-icon GSE42432
Effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Polyphenolic compounds, such as resveratrol, have recently received widespread interest due to their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology and underlying processes. Nine healthy obese men were supplemented with placebo and 150mg/day resveratrol for 30 days, separated by a 4-week washout period. A postprandial abdominal subcutaneous adipose tissue biopsy was collected to assess adipose tissue morphology and gene expression using microarray analysis. Resveratrol significantly decreased adipocyte size, with a shift towards a reduction in the proportion of large and very large adipocytes and an increase in small adipocytes. Microarray analysis revealed downregulation of Wnt, Notch and BMP/TGF- signaling pathways and upregulation of pathways involved in cell cycle after resveratrol supplementation, suggesting enhanced adipogenesis. Furthermore, the lysosomal/phagosomal pathway and the transcription factor EB were upregulated, reflecting an alternative pathway of lipid breakdown by autophagy. These data suggest that adipose tissue is an important target tissue for the effects of resveratrol in humans, but further research is necessary to investigate whether it translates into an improved adipose tissue function.

Publication Title

The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment, Race, Subject

View Samples
accession-icon GSE23748
Tofu decreases serum lipid levels and modulates hepatic gene expression involved in lipid metabolism in rats
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The effects of freeze-dried tofu, a traditional Japanese soy food, were compared with those of major active soy components, protein and isoflavone, by observing physiological differences and global transcriptomes in the liver of male rats.

Publication Title

Tofu (soybean curd) lowers serum lipid levels and modulates hepatic gene expression involved in lipogenesis primarily through its protein, not isoflavone, component in rats.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE33115
Molecular changes induced by melanoma cell conditioned medium (MCM) in HUVEC cells.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Malignant melanoma is a complex genetic disease and the most aggressive form of skin cancer. Melanoma progression and metastatic dissemination fundamentally relies on the process of angiogenesis. Melanomas produce an array of angiogenic modulators that mediate pathological angiogenesis. Such tumor-associated modulators arbitrate the enhanced proliferative, survival and migratory responses exhibited by endothelial cells, in the hypoxic tumor environment. The current study focuses on melanoma-induced survival of endothelial cells under hypoxic conditions. Melanoma conditioned media were capable of enabling prolonged endothelial cell survival under hypoxia, in contrast with the conditioned media derived from melanocytes, breast and pancreatic tumors. To identify the global changes in gene expression and further characterize the pro-survival pathway induced in endothelial cells, we performed microarray analysis on endothelial cells treated with melanoma conditioned medium under normoxic and hypoxic conditions.

Publication Title

Melanomas prevent endothelial cell death under restrictive culture conditions by signaling through AKT and p38 MAPK/ ERK-1/2 cascades.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27378
Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dorsomorphin is a small molecule inhibitor of type I bone morphogenic protein receptors (BMPRs). We have found that dorsomorphin affects a wide range of T cell function. In order to obtain the bigger picture of the effects of DM in T cell activation. transcriptomic analysis was performed using mouse primary CD25-CD4+ T cells with either DM (4 M) or vehicle in the presence or absence of stimulation by anti-CD3 and -CD28 antibodies.

Publication Title

Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE25458
Gene expression in endometrial cancer cells treated with metastin-10 (kp10)
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Invasion into deep myometrium and/or lymphovascular space is a well-known risk factor for endometrial cancer metastasis, resulting in poor prognosis. It is therefore clinically important to identify novel molecules that suppress tumor invasion. Reduced expression of the metastasis suppressor, KISS1 (kisspeptin), and its endogenous receptor, GPR54, has been reported in several cancers, but the significance of the KISS1/GPR54 axis in endometrial cancer metastasis has not been clarified. Metastin-10 is the minimal bioactive sequence of genetic products of KISS1. Clinicopathological analysis of 92 endometrial cancers revealed overall survival is improved in cancers with high expression of GPR54. Through RNAi and mousemodel analyses, metastin-10 was predicted to suppress invasion and metastasis of GPR54-expressing endometrial cancers. These data suggest that metastin-10 may induce genetic changes in the metastatic character of endometrial cancers.

Publication Title

GPR54 is a target for suppression of metastasis in endometrial cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact