refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1153 results
Sort by

Filters

Technology

Platform

accession-icon GSE77087
Nasopharyngeal microbiota, host transcriptome and disease severity in children with respiratory syncytial virus infection
  • organism-icon Homo sapiens
  • sample-icon 104 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Rationale: Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity among children. We postulate that severity of RSV infection is influenced in part by modulation of the host immune response by the local microbial ecosystem at the time of infection. Objectives: To define whether different nasopharyngeal microbiota profiles are associated with distinct host transcriptome profiles and severity in children with RSV infection. Methods: We analyzed the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy matched controls by 16S-rRNA sequencing. In parallel, we analyzed whole blood gene expression profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response and clinical disease severity. Measurements and Main results: We identified five nasopharyngeal microbiota profiles characterized by enrichment of H. influenzae, Streptococcus, Corynebacterium, Moraxella or S. aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus, and negatively associated with S. aureus abundance, independent of age. The host response to RSV was defined by overexpression of interferon-related genes, and this was independent of the microbiota composition. On the other hand, transcriptome profiles of RSV infected children with H. influenzae and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to toll-like receptor-signaling and neutrophil activation and were more frequently hospitalized Conclusions: Our data suggest an immunomodulatory role for the resident nasopharyngeal microbial community early in RSV infection, potentially affecting RSV disease severity.

Publication Title

Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection.

Sample Metadata Fields

Sex, Specimen part, Disease, Race

View Samples
accession-icon GSE67059
Whole Blood Transcriptional Profiling Differentiates Between Asymptomatic and Symptomatic Human Rhinovirus Detection in Children
  • organism-icon Homo sapiens
  • sample-icon 151 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Human rhinoviruses (HRV) are among the most common causes of respiratory infections in humans but can be frequently detected also in asymptomatic subjects. We evaluated the value of gene expression profiles to differentiate asymptomatic detection from symptomatic HRV infection in children.

Publication Title

Rhinovirus Detection in Symptomatic and Asymptomatic Children: Value of Host Transcriptome Analysis.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Race

View Samples
accession-icon SRP154984
Inflammation induced by influenza virus impairs innate control of human pneumococcal carriage
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Secondary bacterial pneumonia following influenza infection is a significant cause of mortality worldwide. Upper respiratory tract pneumococcal carriage is important as both determinants of disease and population transmission. The immunological mechanisms that contain pneumococcal carriage are well-studied in mice but remain unclear in humans. Loss of this control of carriage following influenza infection is associated with secondary bacterial pneumonia during seasonal and pandemic outbreaks. We used a human type 6B pneumococcal challenge model to show that carriage acquisition induces early degranulation of resident neutrophils and recruitment of monocytes to the nose. Monocyte function associated with clearance of pneumococcal carriage. Prior nasal infection with live attenuated influenza virus induced inflammation, impaired innate function and altered genome-wide nasal gene responses to pneumococcal carriage. Levels of the cytokine IP-10 promoted by viral infection at the time of pneumococcal encounter was positively associated with bacterial density. These findings provide novel insights in nasal immunity to pneumococcus and viral-bacterial interactions during co-infection. Overall design: 96 nasal samples from healthy volunteers experimentally challenged with pneumococcus, 3 days after receiving live attenuated influenza vaccine or tetravalent inactivated influenza vaccine underwent RNA-Sequencing. Nasal cells were collected at baseline (D-4) before vaccination, and at 5 days after vaccination (or 2 days after pneumococcal inoculation, D+2) and at 12 days after vaccination (or 9 days after pneumoocccal inoculation, D9)

Publication Title

Inflammation induced by influenza virus impairs human innate immune control of pneumococcus.

Sample Metadata Fields

Specimen part, Disease stage, Subject, Time

View Samples
accession-icon GSE22164
Physiology of Pseudomonas aeruginosa in Biofilms Revealed by Comparative Transcriptomic Analysis.
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Abstract: Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared rankings for a priori identified physiological marker genes between the biofilm and published data sets.

Publication Title

Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE20915
Bortezomib resistance in Mantle Cell Lymphoma (MCL) is associated with plasmacytic differentiation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bortezomib-induced resistant MCL cell lines (HBL2 BR and JEKO BR) were generated by continuous cultured of corresponding parental cell lines (HBL2 PT and JEKO PT) with increasing bortezomib concentrations

Publication Title

Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21029
The lymph node microenvironment promotes B-cell receptor signaling, NF-B activation, and tumor proliferation in chronic lymphocytic leukemia (CLL)
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To elucidate effects of tumor host interactions in vivo in CLL, purified tumor cells were obtained concurrently from blood, bone marrow and/or lymph node and analyzed by gene expression profiling.

Publication Title

The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE8077
Global analyses of gene expression in early experimental knee osteoarthritis
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

OBJECTIVE: To analyze genome-wide changes in chondrocyte gene expression in a surgically induced model of early osteoarthritis (OA) in rats, to assess the similarity of this model to human OA, and to identify genes and mechanisms leading to OA pathogenesis. METHODS: OA was surgically induced in 5 rats by anterior cruciate ligament transection and partial medial meniscectomy. Sham surgery was performed in 5 additional animals, which were used as controls. Both groups underwent 4 weeks of forced mobilization, 3 times per week. RNA was extracted directly from articular chondrocytes in the OA (operated), contralateral, and sham-operated knees. Affymetrix GeneChip expression arrays were used to assess genome-wide changes in gene expression. Expression patterns of selected dysregulated genes, including Col2a1, Mmp13, Adamts5, Ctsc, Ptges, and Cxcr4, were validated by real-time polymerase chain reaction, immunofluorescence, or immunohistochemistry 2, 4, and 8 weeks after surgery. RESULTS: After normalization, comparison of OA and sham-operated samples showed 1,619 differentially expressed probe sets with changes in their levels of expression >/=1.5-fold, 722 with changes >/=2-fold, 135 with changes >/=4-fold, and 20 with changes of 8-fold. Dysregulated genes known to be involved in human OA included Mmp13, Adamts5, and Ptgs2, among others. Several dysregulated genes (e.g., Reln, Phex, and Ltbp2) had been identified in our earlier microarray study of hypertrophic chondrocyte differentiation. Other genes involved in cytokine and chemokine signaling, including Cxcr4 and Ccl2, were identified. Changes in gene expression were also observed in the contralateral knee, validating the sham operation as the appropriate control. CONCLUSION: Our results demonstrate that the animal model mimics gene expression changes seen in human OA, supporting the relevance of newly identified genes and pathways to early human OA. We propose new avenues for OA pathogenesis research and potential targets for novel OA treatments, including cathepsins and cytokine, chemokine, and growth factor signaling pathways, in addition to factors controlling the progression of chondrocyte differentiation.

Publication Title

Global analyses of gene expression in early experimental osteoarthritis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33754
Expression data of cartiliage from CBA and STR/ORT mice
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Affymetrix Mouse Gene 1.0 ST Array profiles were generated from acticular cartilage derived from CBA and Str/ort mice at three ages (8W, 18W, 40W), corresponding to stages prior to, at and late after natural osteoarthritis (OA) onset in OA-prone Str/ort mice.

Publication Title

Time-series transcriptional profiling yields new perspectives on susceptibility to murine osteoarthritis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP044747
The dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Sertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2a), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1ß), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility. Overall design: Genome-wide expression profiling analysis using Illumina next-generation sequencing technology

Publication Title

Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP093988
Krüppel-like Transcription Factor-10 (KLF10) Provides a Negative Feedback Mechanism to Suppress TGFß-Induced Epithelial-to-Mesenchymal Transition [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We examined transcriptome-wide effects of pertrurbation in KLF10 function (siKLF10) on TGFß-regulated genes and EMT in two different cells lines: A549 and Panc1. Overall design: We performed mRNA sequencing from A549 and Panc1 cells following following TGFß treatment and KLF10 knockdown. The mRNA-Seq includes following conditions: siControl, siKLF10, TGFß, siKLF10+TGFß (A549 and Panc1 cells). mRNA-sequencing was performed in duplicates for A549 and triplicates for Panc1 cells.

Publication Title

Krüppel-like Transcription Factor KLF10 Suppresses TGFβ-Induced Epithelial-to-Mesenchymal Transition via a Negative Feedback Mechanism.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact