refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE74057
Snail1 controls fibroblast action on tumor cell invasion and metastasis [MSC]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Snail1 transcriptional factor is essential for triggering epithelial-to-mesenchymal transition (EMT) and inducing tumor cell invasion. We report here that Snail1 plays also a key role in tumor associated fibroblasts since is necessary for enhancement by these cells on epithelial cells tumor invasion. Snail1 expression in fibroblast requires signals derived from tumor cells such as TGF-b; reciprocally, in fibroblasts Snail1 organizes a complex program that favors collective invasion of epithelial cells at least in part by the secretion of diffusible signaling molecules, such as prostaglandin E2. The capability of human or murine tumor-derived cancer associated fibroblasts to promote tumor invasion is associated to Snail1 expression and obliterated by Snail1 depletion. In vivo experiments show that tumor cells co-transplanted with Snail1 depleted fibroblasts show lower invasion than those xenografted with control fibroblasts. Finally Snail1 depletion in mice prevents the formation of breast tumors and decreased their invasion. Therefore, these results demonstrate that the role of Snail1 in tumor invasion is not limited to its effect in EMT but dependent on its expression in stromal fibroblasts where it orchestrates its activation and the crosstalk with epithelial cells.

Publication Title

Snail1-Dependent Activation of Cancer-Associated Fibroblast Controls Epithelial Tumor Cell Invasion and Metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP057718
Transcriptomic analysis of the mouse mammary gland reveals new insights for the role of serotonin in lactation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Serotonin in the mammary gland is known to regulate processes such as calcium homeostasis, tight junction permeability, and milk protein gene expression. The objective of this study was to discover novel genes, pathways and functions which serotonin modulates during lactation. The rate-limiting enzyme in the synthesis of non-neuronal serotonin is tryptophan-hydroxylase (TPH1). Therefore, we used TPH1 knock-out mice dams (serotonin deficient) and compared them to wild-type dams and also Tph1 deficient dams injected daily with 5-HTP. Mammary gland tissues were collected on day 10 of lactation and then analyzed by RNA sequencing. Overall design: Genome-wide gene expression profiles of 12 mouse mammary gland samples were evaluated using RNA sequencing; these 12 samples belong to wild-type dams (WT; n = 4), Tryptophan hydroxylase (Tph1) knock-out dams (KO; Tph1 deficient; n = 4), and Tph1 deficient dams injected daily with 5-HTP (RC; n = 4). Mammary tissues were collected on day 10 of lactation and then underwent RNA extraction, library generation, and subsequent sequencing.

Publication Title

Transcriptomic Analysis of the Mouse Mammary Gland Reveals New Insights for the Role of Serotonin in Lactation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP158188
RNA-seq profiles of reprogramming cells at Day 3 and Day 6 from MEFs to iPS cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

AIM: To detect differences in transcriptional profiles after knocking down Brca1, Bard1 or Wdr5, compared to a negative control in early reprogramming to pluripotency. DESCRIPTION: RNA-seq profiles of early reprogramming mouse embryonic fibroblasts (MEFs) transduced with lentivirus containing doxycycline-inducible OSKM factors to induce pluripotency . Before starting reprogramming, OSKM-MEFs were transfected with different siRNAs and then they were reprogrammed for 3 or 6 days. Overall design: The control sample consists of cells transfected with non-targeting siRNA. The other samples were transfected with either siBrca1, siWdr5 or siBard1. For every knockdown there is a biological replicate.

Publication Title

The corepressor NCOR1 and OCT4 facilitate early reprogramming by suppressing fibroblast gene expression.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP158239
CELSeq2-profiles for siRNA screening and daily timecourse for early reprogramming to pluripotency.
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

AIM: To find molecular signatures associated to the siRNA-mediated knockdowns in order to be able to identify similarities among different knockdowns. DESCRIPTION: Each sample includes biological triplicates for 35 siRNA-mediated knockdowns targeting 30 chromatin-associated proteins during in early reprogramming to iPS at day 6. A daily timecourse from reprogramming cells, without treatment from MEFs until day 6 is also included in triplicate. Overall design: RNA was harvested for all samples in bulk and the CELSeq2 method was used to prepare the RNAseq libraries

Publication Title

The corepressor NCOR1 and OCT4 facilitate early reprogramming by suppressing fibroblast gene expression.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE31660
Gene expression associated with compatible viral diseases in berry
  • organism-icon Vitis vinifera
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.

Publication Title

Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP017573
Knockdown of CDKN1C (p57kip2) and PHLDA2 results in developmental changes in bovine pre-implantation embryos
  • organism-icon Bos taurus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome of CDKN1C-siRNA-injected embryos were compared to sham-injected embryos using RNA-sequencing to determine the genes and pathways downstream of the silenced gene that may have been altered. Overall design: Transcriptome comparison between two pools of embryos (i.e. CDKN1C-siRNA-injected vs sham-injected embryos)

Publication Title

Knockdown of CDKN1C (p57(kip2)) and PHLDA2 results in developmental changes in bovine pre-implantation embryos.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE29110
Fibrogenic and redox-related but not proinflammatory genes are upregulated in lewis rat model of chronic silicosis
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Silicosis, a fibrotic granulomatous lung disease, may occur through accidental high-dose or occupational inhalation of silica, leading to acute/accelerated and chronic silicosis, respectively. While chronic silicosis has a long asymptomatic latency, lung inflammation and apoptosis are hallmarks of acute silicosis. In animal models, histiocytic granulomas develop within days after high-dose intratracheal silica instillation. However, following chronic inhalation of occupationally relevant doses of silica, discrete granulomas resembling human silicosis arise months after the final exposure without significant lung inflammation/apoptosis. To identify molecular events associated with chronic silicosis, lung RNAs from controls or chronically silica-exposed rats were analyzed by Affymetrix at 28 wk after silica exposures. Results suggested a significant upregulation of 144 genes and downregulation of seven genes. The upregulated genes included complement cascade, chemokines/chemokine receptors, G-protein signaling components, metalloproteases, and genes associated with oxidative stress. To examine the kinetics of gene expression relevant to silicosis, qPCR, ELISA, Luminex-bead assays, Western blotting, and/or zymography were performed on lung tissues from 4 d, 28 wk, and intermediate times after chronic silica exposure and compared with 14 d acute silicosis samples. Results indicated that genes regulating fibrosis (secreted phosphoprotein-1, CCL2, and CCL7), redox enzymes (superoxide dismutase-2 and arginase-1), and the enzymatic activities of matrix metalloproteinases 2 and 9 were upregulated in acute and chronic silicosis; however, proinflammatory cytokines were strongly upregulated only in acute silicosis. Thus, inflammatory cytokines are associated with acute but not chronic silicosis; however, genes regulating fibrosis, oxidative stress, and metalloproteases may contribute to both acute and chronic silicosis.

Publication Title

Fibrogenic and redox-related but not proinflammatory genes are upregulated in Lewis rat model of chronic silicosis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE43748
Transcriptional profiles of psychostimulant reinforcement in rats
  • organism-icon Rattus norvegicus
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Drug-induced alterations in transcriptional regulation play a central role in establishing the persistent neuroplasticities that occur during drug addiction. Additionally, changes in gene expression associated with drug administration provide valuable insight into the molecular basis of drug abuse. The molecular mechanisms that underlie susceptibility to psychostimulant addiction remain unknown. Identifying the common gene transcriptional responses to psychostimulants can provide a mechanistic insight to elucidate the molecular nature of drug dependence.

Publication Title

Neuronal development genes are key elements mediating the reinforcing effects of methamphetamine, amphetamine, and methylphenidate.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27669
Expression data from Arabidopsis Col-0 expressing FLAG-SUB1A or FLAG-SUB1C rice ERFs
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In rice (Oryza sativa L.), the haplotype at the multigenic SUBMERGENCE 1 (SUB1) locus determines survival of prolonged submergence. SUB1 encodes two or three group VII Ethylene Response Factor (ERF) family transcription factors, SUB1A, SUB1B and SUB1C. A highly submergence-inducible SUB1A allele is present in lines that are submergence tolerant. This gene is the determinant of submergence tolerance. Here, the heterologous ectopic expression of rice SUB1A and SUB1C in Arabidopsis thaliana was employed to assess the transcriptional network mobilized by ectopic expression of SUB1A and SUB1C.

Publication Title

Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69082
Gene expression signature after klotho knockdown in HCC1395 triple negative breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Klotho is critical for the survival of triple negative breast cancer (TNBC) cells HCC1395, since its depletion leads to decreased cell viability, cell cycle arrest and apoptosis.

Publication Title

γKlotho is a novel marker and cell survival factor in a subset of triple negative breast cancers.

Sample Metadata Fields

Specimen part, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact