refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 527 results
Sort by

Filters

Technology

Platform

accession-icon GSE77084
Liver of MAT1A WT and MAT1A KO mice treated with placebo or SAMe during 8 weeks
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE77082
Gene expression analysis of the liver of MAT1A WT and MAT1A KO mice treated with placebo or SAMe during 8 weeks
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Methionine adenosyltransferase (MAT) enzymes generate SAMe (S-adenosylmethionine), the main biological methyl donor. There are two MAT encoding genes in mammals (Mat1a and Mat2a), which show different activities and cellular distribution. Mat1a encodes the enzyme mainly expressed in normal liver. Mat1a ablation in mice results in the spontaneous development of non-alcoholic steatohepatitis (NASH). We observed that SAMe depletion in Mat1a KO mice had three main effects on hepatic lipid metabolism: 1) impaired TG (triglyceride) export via VLDL; 2) impaired mitochondrial FA (fatty acid) oxidation (as evidenced by membrane depolarization, downregulation of Phb1 (prohibitin 1, a mitochondrial chaperone protein) and Mcj/Dnajc15 (endogenous mitochondrial repressor of respiratory chain), and accumulation of long-chain acylcarnitines); and 3) increased FA uptake. The convergence of these three factors induced TG accumulation in LD (lipid droplets). LD expansion confronts hepatocytes with a high demand of PC (phosphatidylcholine) molecules to cover the LD surface since other phospholipids, such as PE (phosphatidylethanolamine), cannot stabilize LD and prevent coalescence. In Mat1a KO this situation is aggravated, since SAMe-dependent PC synthesis via PE methylation is decreased, the PC/PE ratio reduced and mitochondrial FA oxidation impaired. To put a brake to this drain of PC molecules to LD, FA are rerouted in Mat1a KO mice liver to other catabolic (endoplasmic reticulum and peroxisome oxidation) and biosynthetic (ceramides synthesis) pathways, causing oxidative stress, inflammation and fibrosis. SAMe treatment for two months in 8-9 month old Mat1a KO mice ameliorated mitochondrial dysfunction (reduces membrane depolarization, improves Phb1 and Mcj expression, and increases SAMe transport to mitochondria) improving FA oxidation efficiency (FA and acylcarnitine levels decrease), which results in a drastic reduction in TG accumulation. SAMe treatment in Mat1a KO mice resulted in more PC available for proper membrane function, improving liver lipid homeostasis, histology (H&E, Sudan red, Sirius red) and liver injury (ALT, AST).

Publication Title

Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE7007
Ewing samples and EWS-FLI-1 inhibited Ewing cell lines
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.

Publication Title

Mesenchymal stem cell features of Ewing tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE7491
Expression data from rat lung alveolar development
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Lung alveolarization is a complex process that involves interactions between several cell types and leads to considerable increase in gas-exchange surface area. The step designated secondary septation includes elastogenesis from interstitial fibroblasts.

Publication Title

Gene expression profiling in lung fibroblasts reveals new players in alveolarization.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66171
Epithelial inactivation of Yy1 abrogates lung branching morphogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation while Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching, and caused airway dilation similar to those seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be explained by the reduced expression of Shh in lung endoderm, a transcriptional target of YY1, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the critical requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.

Publication Title

Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62157
A role of regulatory T cells in brown adipose tissue physiology
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The presence of different types of immune cells in adipose tissue has been demonstrated in numerous studies. Whereas cells of the immune system in white adipose tissue contribute to the low-grade chronic inflammation under obese conditions, their function in brown adipose tissue (BAT) remains largely elusive. Here we report a role of regulatory T (Treg) cells in BAT physiology.Ablation of Treg cells resulted in massive invasion of macrophages into BAT concordant with rearrangement of BAT morphology. Treg ablated animals displayed reduced energy expenditure. Our results for the first time demonstrate a functional role of Treg cells in the regulation of energy homeostasis.

Publication Title

Brown adipose tissue harbors a distinct sub-population of regulatory T cells.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP063624
Expression profiling of centroacinar cells from adult zebrafish pancreas
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

We sequenced mRNA from two preparations of isolated Notch-responsive ductal pancreas cells and compared transcript expression to all other non-Notch-responsive cells from each sample to charactarize zebrafish centroacinar cells. Overall design: Determination of gene expression levels in centroacinar cells and non-centroacinar cells from adult pancreas.

Publication Title

Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6631
Expression data from head and neck squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Forty-four paired (from the same patient) samples of head and neck squamous cell carcinoma (HNSCC) and normal tissue were studied with Affymetrix U95A chips. A stringent multi-test approach, combining 7 traditional and microarray-specific statistical tests, was used to analyze the resultant data. Candidate genes were assigned to tiers of significance based on the number of statistical tests that each gene satisfied. Representative genes (both up-regulated and down-regulated) from each of the 3 tiers would be quantified with RT-PCR on both microarray-tested and new samples of HNSCC.

Publication Title

Selection and validation of differentially expressed genes in head and neck cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60003
Expression data from Control or ShSuz12 rat Intestinal epithelial cells IEC-6
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Polycomb-group proteins form multimeric protein complexes involved in transcriptional silencing. The Polycomb Repressive complex 2 (PRC2) contains the Suppressor of Zeste-12 protein (Suz12) and the histone methyltransferase Enhancer of Zeste protein-2 (Ezh2). This complex, catalyzing the di- and tri-methylation of histone H3 lysine 27, is essential for embryonic development and stem cell renewal. However, the role of Polycomb-group protein complexes in the control of the intestinal epithelial cell (IEC) phenotype is not known. We investigated the impact of Suz 12 depletion on gene expression in IEC-6 cells.

Publication Title

The histone H3K27 methylation mark regulates intestinal epithelial cell density-dependent proliferation and the inflammatory response.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17920
Expression data of diagnostic biopsy samples from Hodgkin lymphoma patients
  • organism-icon Homo sapiens
  • sample-icon 130 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Despite advances in Hodgkin lymphoma (HL) treatment, about 20% of patients still die due to progressive disease. Current prognostic models predict treatment outcome with imperfect accuracy, and clinically relevant biomarkers are yet to be established that improve upon the International Prognostic Scoring (IPS) system. We analyzed 130 frozen diagnostic lymph node biopsies from classical HL patients by gene expression profiling to describe cellular signatures correlated with treatment outcome.

Publication Title

Tumor-associated macrophages and survival in classic Hodgkin's lymphoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact