refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1516 results
Sort by

Filters

Technology

Platform

accession-icon GSE16476
Integrated bioinformatic and wet-lab approach to identify potential oncogenic networks in neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 86 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

mRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.

Publication Title

Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10775
Expression profiling of mammalian Schwann cells in response to treatment with NRG and/or IGF
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Comparison of the changes in mitochondrial gene expression of cells in which extracellular growth factors and/or mitogens have been added.

Publication Title

Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32519
Post-mortem cardiac tissue maintains gene expression profile even after late harvesting.
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Gene expression studies are used to help identify disease-associated genes, by comparing the levels of expressed transcripts between cases and controls, and to identify functional genetic variants known as expression quantitative loci (eQTLs). While many of these studies are performed in blood or lymphoblastoid cell lines due to tissue accessibility, the relevance of expression differences in tissues that are not the primary site of disease is unclear. Further, many eQTLs are tissue specific. Thus, there is a clear and compelling need to conduct gene expression studies in tissues that are specifically relevant to the disease of interest. One major technical concern about using autopsy-derived tissue is how representative it is of physiologic conditions, given the effect of postmortem interval on tissue degradation.

Publication Title

Postmortem cardiac tissue maintains gene expression profile even after late harvesting.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE7754
Identification of human miR-34a-responsive transcripts
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to examine the consequences of human miR-34a induction on the transcriptome, HCT116 cells (a colon cancer cell line) were infected with a retrovirus that produces miR-34a. Gene expression profiles were then monitored using Affymetrix microarrays.

Publication Title

Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20647
Expression analysis of AOM-induced tumors and serrated tumors in mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Abstract: Colonic cancers with a serrated morphology have been proposed to comprise a molecularly distinct tumor entity following an alternative pathway of genetic alterations independently of APC mutations. Here we demonstrate that intestinal cell specific expression of oncogenic K-rasG12D in mice induces serrated hyperplasia, which is characterized by p16ink4a overexpression and induction of senescence. Deletion of Ink4a/Arf in K-rasG12D expressing mice prevents senescence and leads to invasive, metastasizing carcinomas with morphological and molecular alterations comparable to human KRAS mutated serrated tumors. Thus, we suggest that oncogenic K-ras is sufficient to initiate an alternative, serrated pathway to colorectal cancer and hence propose RAS-RAF-MEK signaling apart from APC as an additional gatekeeper in colorectal tumor development.

Publication Title

Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP155778
Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This scRNA-seq experiment is an integral part of a manuscript with the above title. Our analysis of the scRNA-seq data suggests that activated CARD11 promotes immunoglobulin class-switching in germinal center B cells and generation of IgG1-secreting plasma cells. Overall design: Single-cell suspensions were prepared from spleens harvested from mice 5 days post immunization with sheep red blood cells. B cells were enriched using an immunomagnetic negative selection kit. scRNA-seq was performed using the Chromium product suite by 10x Genomics.

Publication Title

Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE44816
DOCK8 is critical for the survival and function of NKT cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DOCK8 is critical for the survival and function of NKT cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE44815
DOCK8 is critical for the survival and function of NKT cells [NKT_CD103+]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of DOCK8 deficient animals revealed a novel marker of NKT cell development, the integrin CD103. The role of CD103 was further investigated by RNA microarray comparing CD103 negative versus positive NKT cells.

Publication Title

DOCK8 is critical for the survival and function of NKT cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE44814
DOCK8 is critical for the survival and function of NKT cells [DOCK8_CPM_NKT]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of DOCK8 deficient animals revealed a key role for this protein the survival and maintenance of natural killer T cells. This work lead to the identification of genes regulated by the guanine exchange factor, DOCK8.

Publication Title

DOCK8 is critical for the survival and function of NKT cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51631
IKK promotes intestinal tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Depending on the tumor type IB kinase (IKK) can act as tumor promoter or tumor suppressor in various malignancies. Here we demonstrate a key function of IKK in the suppression of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKK kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of IFN expressing M1-like myeloid cells. In IKK mutant mice M1-like polarization is not controlled in a cell autonomous manner but depends rather on the interplay of both IKK mutant tumor epithelia and immune cells.

Publication Title

IKKα promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact