refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1508 results
Sort by

Filters

Technology

Platform

accession-icon GSE44082
Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Hypothalamic food intake regulation in a cancer-cachectic mouse model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE44081
Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 2]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.

Publication Title

Hypothalamic food intake regulation in a cancer-cachectic mouse model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE44080
Hypothalamic gene expression of appetite regulators in a cancer-cachectic mouse model [Dataset 1]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Appetite is frequently affected in cancer patients, leading to anorexia and consequently insufficient food intake. In this study, we report on hypothalamic gene expression profile of a cancer cachectic mouse model with increased food intake. In this model, mice bearing C26 colon adenocarcinoma have an increased food intake subsequently to the loss of body weight. We hypothesize that in this model, appetite regulating systems in the hypothalamus, which apparently fail in anorexia, are still able to adapt adequately to changes in energy balance. Therefore studying the changes that occur on appetite regulators in the hypothalamus might reveal targets for treatment of cancer-induced eating disorders. By applying transcriptomics, many appetite regulating systems in the hypothalamus could be taken into account, providing an overview of changes that occur in the hypothalamus during tumour growth. We show that hypothalamic expression of orexigenic neuropeptides NPY and AgRP was higher, whereas expression of anorexigenic genes CCK and POMC were lower in TB compared to controls. In addition, serotonin and dopamine signalling pathways were found to be significantly altered in TB mice. Serotonin levels in brain showed to be lower in TB mice compared to control mice, while dopamine levels did not change. Moreover, serotonin levels inversely correlated with food intake. Transcriptomic analysis of the hypothalamus of cachectic TB mice with an increased food intake showed changes in NPY, AgRP and serotonin signalling. Serotonin levels in the brain showed to correlate with changes in food intake. Targeting these systems seems a promising strategy to avoid the development of cancer-induced eating disorders.

Publication Title

Hypothalamic food intake regulation in a cancer-cachectic mouse model.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE49036
Evidence for immune response, axonal dysfunction and reduced endocytosis preceding Lewy body pathology in the substantia nigra in Parkinsons disease
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Subjects with incidental Lewy body disease (iLBD) may represent the premotor stage of Parkinsons disease (PD). To identify molecular mechanisms underlying neuronal dysfunction and alpha--synuclein pathology in the premotor phase of PD, we investigated the transcriptome of post-mortem substantia nigra (SN) of iLBD, PD donors and age-matched controls with Braak alpha--synuclein stage ranging from 0-6. In Braak alpha--synuclein stages 1 and 2, we observed deregulation of pathways linked to axonal degeneration, unfolded protein response (UPR), immune response and endocytosis, including axonal guidance signaling, protein kinase A signaling, mTOR signaling, EIF2 signaling and clathrin-mediated endocytosis. In Braak stages 3 and 4, we observed a deregulation in pathways involved in protein translation and cell survival, including mTOR and EIF2 signaling. In Braak stages 5 and 6, we observed deregulation of pathways such as dopaminergic signaling, axonal guidance signaling and thrombin signaling. Throughout the progression of PD pathology, we observed a deregulation of mTOR, EIF2 and regulation of eIF4 and p70S6K signaling in the SN. This implicates that molecular mechanisms related to UPR, axonal dysfunction, endocytosis and immune response are an early event in PD pathology, and may hold the key to altering the disease progression in PD.

Publication Title

Evidence for Immune Response, Axonal Dysfunction and Reduced Endocytosis in the Substantia Nigra in Early Stage Parkinson's Disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE76087
Modulating the gut microbiota by dietary guar gum protects against diet-induced obesity but promotes non-alcoholic steatohepatitis in mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide, yet the pathogenesis of NAFLD is only partially understood. Here, we investigated the role of the gut bacteria in NAFLD by stimulating the gut bacteria via feeding mice the fermentable dietary fiber guar gum and suppressing the gut bacteria via chronic oral administration of antibiotics. Guar gum feeding profoundly altered the gut microbiota composition, in parallel with reduced diet-induced obesity and improved glucose tolerance. Strikingly, despite reducing adipose tissue mass and inflammation, guar gum enhanced hepatic inflammation and fibrosis, concurrent with markedly elevated plasma and hepatic bile acid levels. Consistent with a role of elevated bile acids in the liver phenotype, treatment of mice with taurocholic acid stimulated hepatic inflammation and fibrosis. In contrast to guar gum, chronic oral administration of antibiotics effectively suppressed the gut bacteria, decreased portal secondary bile acid levels, and attenuated hepatic inflammation and fibrosis. Neither guar gum or antibiotics influenced plasma lipopolysaccharide levels. In conclusion, our data indicate a causal link between changes in gut microbiota and hepatic inflammation and fibrosis in a mouse model of NAFLD, possibly via alterations in bile acids.

Publication Title

Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: a potential role for bile acids.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE15940
Sex-Dependent Programming of Glucose and Fatty Acid Metabolism in Mouse Offspring by Maternal Protein Restriction
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Analysis of glucose and Lipid metabolism in male and female offspring after protein restriction of the mother

Publication Title

Sex-dependent programming of glucose and fatty acid metabolism in mouse offspring by maternal protein restriction.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE93642
Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Calorie restriction (CR) has been shown to extend life- and health-span in model species. For most humans, a life-long CR diet is too arduous to adhere to. The aim of this study was to explore whether weekly intermittent CR can 1) provide long-term beneficial effects and 2) counteract diet-induced obesity in male aging mice. In this study, we have exposed C57Bl/6J mice for 24 months to an intermittent (INT) diet, alternating weekly between CR of a control diet and ad libitum moderate-fat (MF) feeding. This weekly intermittent CR significantly counteracted the adverse effects of the MF diet on mortality, body weight and liver health markers in male 24-month-old mice. Hepatic gene expression profiles of INT-exposed animals appeared much more comparable to CR than to MF-exposed mice. At 12 months of age, a subgroup of MF-exposed mice was transferred to the INT diet. Gene expression profiles in the liver of the 24-month-old diet switch mice were highly similar to the INT-exposed mice. However, a small subset of genes was consistently changed by the MF diet during the first phase of life. Weekly intermittent CR largely, but not completely, reversed adverse effects caused by a MF diet.

Publication Title

Intermittent calorie restriction largely counteracts the adverse health effects of a moderate-fat diet in aging C57BL/6J mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE6134
Offsprings of crosses between hypercholesterolemic and normocholesterolemic parents LUMC-HKG-ApoE-Atherosclerosis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Enhanced prenatal fatty streak formation in human fetuses has been associated with maternal hypercholesterolemia. However, the possible roles of maternal genetic background and in utero environment on development of atherosclerosis in adult life have not been unraveled. We generated genetically identical heterozygous apoE-deficient mice offspring with a different maternal background to study the intrauterine effect of maternal genotype and associated hypercholesterolemia on the developing vascular system. As read out for increased atherosclerosis development in adult life, a constrictive collar was placed around the carotid artery to induce lesion formation. A significant increase in endothelial cell activation and damage was detected in the carotid arteries of heterozygous apoE-deficient fetuses with apoE-deficient mothers compared with offspring from wild type mothers, but no fatty streak formation was observed. Postnatally, all carotid arteries revealed normal morphology. In adult offspring with maternal apoE-deficiency, the constrictive collar resulted in severe lesion (9/10) development compared with no to only minor lesions (2/10) in offspring of wild type mothers. Microarray analysis showed no effect of maternal apoE-deficiency on gene expression in adult offspring. We conclude that maternal apoE-deficiency not only affects fetal arteries, but also increases the susceptibility for development of collar-induced atherosclerosis in adult life.

Publication Title

Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41942
Overexpression of miR-9 and miR-9* in 32D cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Overexpression of miR-9 and miR-9* in 32D cells, cells grown under IL-3 conditions and miR-9 and miR-9* were introduced with retroviral vectors containing about ~150 bp up and downstream of mmu-mir-9-2.

Publication Title

Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE12902
Oncogenomic analysis of mycosis fungoides reveals major differences with Szary syndrome
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is a malignancy of mature, skin-homing T cells. Szary syndrome (Sz) is often considered to represent a leukemic phase of MF. In this study the pattern of numerical chromosomal alterations in MF tumor samples was defined using array-based CGH; simultaneously gene expression was analyzed using microarrays. Highly recurrent chromosomal alterations in MF include copy number gain of 7q36, 7q21-7q22 and loss of 5q13 and 9p21. This pattern characteristic of MF differs markedly from chromosomal alterations observed in Sz. Integration of data from array-based CGH and gene expression analysis yielded several candidate genes with potential relevance in the pathogenesis of MF. We confirmed that the FASTK and SKAP1 genes, residing in loci with recurrent gain, demonstrated increased expression. The RB1 and DLEU1 tumor suppressor genes showed diminished expression associated with loss. In addition, it was found that presence of chromosomal alterations on 9p21, 8q24 and 1q21-1q22 was associated with poor prognosis in patients with MF. This study provides novel insight into genetic alterations underlying MF. Furthermore, our analysis uncovered genomic differences between MF and Sz, which suggest that the molecular pathogenesis and therefore therapeutic requirements of these CTCLs may be distinct.

Publication Title

Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact