refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1532 results
Sort by

Filters

Technology

Platform

accession-icon SRP068739
Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2500

Description

In this study we studied the presence of tumor cells that underwent epithelial-to-mesenchymal transition within polyoma middle T antigen (PyMT) breast tumors. For this we dissociated tumors and isolated Ecad positive tumor cells by FACS sorting. We confirmed that PyMT tumors contain a small set of tumor cells that have undergone EMT in the primary tumor and that E-cadherin can be used as a marker on single cell level for mesenchymal status in this model. Overall design: (i) We isolated primary tumors from mice, dissociated the tumors and FACS-sorted for single Ecad positive tumor cells, after this we performed single cell sequencing of the cells. (ii) We isolated CTCs and solid tumor cells from mice, dissociated the tumors and FACS-sorted for single Ecad positive and negative cells, after this we performed single cell sequencing of the cells.

Publication Title

Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE112681
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study
  • organism-icon Homo sapiens
  • sample-icon 1117 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE112676
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study [HT12_V3]
  • organism-icon Homo sapiens
  • sample-icon 741 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Transcriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.

Publication Title

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon GSE112680
Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study [HT12_V4]
  • organism-icon Homo sapiens
  • sample-icon 376 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Transcriptome-wide analysis of whole blood gene expression profiles of ALS patients, gender- and age-matched controls and patients diagnosed with diseases mimicking ALS at a tertiary referral center for motor neuron diseases.

Publication Title

Whole blood transcriptome analysis in amyotrophic lateral sclerosis: A biomarker study.

Sample Metadata Fields

Sex, Disease

View Samples
accession-icon SRP049774
Reg4+ Deep Crypt Secretory cells function as epithelial niche for Lgr5+ stem cells in colon
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Lgr5+ stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF and Notch signals to neighboring Lgr5+ stem cells. While the colon lacks Paneth cells, Deep Crypt Secretory (DCS) cells are intermingled with Lgr5+ stem cells at crypt bottoms. Here, we report Reg4 as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon mini-gut formation. In agreement, sorted Reg4+ DCS cells promote organoid formation of single Lgr5+ colon stem cells. Stem cells are forced to generate DCS cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4+ DCS cells serve as Paneth cell equivalents in the colon crypt niche. Overall design: To define a global gene expression signature of DCS cells, we performed RNA-sequencing (RNA-seq) of sorted Reg4-dsRed+ and Lgr5-GFP+ cells from colonic epithelium. Sorting and RNA-seq library preparation was performed twice, to obtain a biological replicate.

Publication Title

Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP082453
Single cell transcriptome sequencing of mammary stem cells in the pubertal mammary gland
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The mammary gland is a highly dynamic organ that mainly develops during puberty. Based on morphology and proliferation analysis, mammary stem cells (MaSCs) are thought to be close to or reside in the terminal end buds (TEBs) during pubertal development. However, exclusive stem cell markers are lacking, and therefore the true identity of MaSCs, including their location, multiplicity, dynamics and fate during branching morphogenesis, has yet to be defined. To gain more insights into the molecular identity and heterogeneity of the MaSC pool, we performed single cell transcriptome sequencing of mammary epithelial cells micro-dissected from ducts and TEBs during puberty. These data show that the behaviour of MaSCs cannot be directly linked to a single expression profile. Instead, morphogenesis of the mammary epithelium relies upon a heterogeneous population of MaSCs that functions long-term as a single equipotent pool of stem cells. Overall design: Ducts and terminal end buds were micro-dissected from the 4th and the 5th murine mammary gland at 5 weeks-of-age, dissociated into single cells, and FACS sorted. Single-cell transcriptomics was performed on live cells using an automated version of CEL-seq2 on live, FACS sorted cells. The StemID algorithm was used to identify clusters of cells corresponding to basal and luminal cells types derived from ducts and terminal end buds.

Publication Title

Identity and dynamics of mammary stem cells during branching morphogenesis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP107747
Specific labeling of stem cell activity in human colorectal organoids using an ASCL2-responsive minigene
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Organoid technology provides the possibility to culture human colon tissue and patient-derived colorectal cancers (CRC) while maintaining all functional and phenotypic characteristics. Labeling of human colon stem cells (CoSCs), especially in normal and benign tumor organoids, is challenging and therefore limits usability of multi-patient organoid libraries for CoSC research. Here, we developed STAR (STem cell Ascl2 Reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5+ CoSC fate. Among others via lentiviral infection, STAR minigene labels stem cells in normal as well as in multiple engineered and patient-derived CRC organoids of different stage and genetic make-up. STAR revealed that stem cell driven differentiation hierarchies and the capacity of cell fate plasticity (de-differentiation) are present at all stages of human CRC development. The flexible and user-friendly nature of STAR applications in combination with organoid technology will facilitate basic research on human adult stem cell biology. Overall design: Cells from different colon organoid types were FACS sorted for stem STemness Ascl2 Reporter activity for transcriptome profiling by RNA-seq.

Publication Title

Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE146039
Expression data of intestinal polyps and intestinal normal tissue from Ubc9+/+ and Ubc9+/- Villin-CreERT2;Apcf/+ mice 12 weeks after 4-OHT treatment
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Most human cancers present hyperactivated sumoylation, and cancer cell lines are usually highly sensitive to the lack of it, supporting potential application of sumoylation chemical inhibitors in cancer therapy. Here, we explored the impact of hyposumoylation (Ubc9 haploinsufficiency) on cancer development in mice using Apc loss-driven intestinal tumorigenesis model.

Publication Title

An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE146106
Expression data from FACS-purified Lgr5-EGFP+ intestinal cells from Ubc9+/+ and Ubc9+/- mice
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The Lgr5+ intestinal stem cell, Paneth and transit-amplifying cell compartment constitute the intestinal crypt which is the constant source of differentiated epithelial cells that replenish the intestinal villi ensuring organ maintenance and regeneration. The Lgr5+ crypt-based columnar (CBC) cells have been identified as the intestinal stem cells (ISCs) and, importantly, as cells-of-origin of intestinal cancer.

Publication Title

An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9 haploinsufficiency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66488
Characterization of tumor extracellular vesicle RNA cargo
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Comparative RNA profiling between tumor cells and their secreted extracellular vesicles. Results revealed enrichment in genes involved in cellular migration and metastasis in extracellular vesicles, in agreement with their role as mediators of tumor progression.

Publication Title

In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact