refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2039 results
Sort by

Filters

Technology

Platform

accession-icon SRP106148
p63 controls the enhancer landscape during keratinocyte differentiation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Here we characterized the transcriptome and epigenome of control keratinocytes during differentiation. Epigenomic analyses showed that the temporal enrichment of p63 motifs in dynamic enhancers underscores the key role of p63 in orchestrating the enhancer landscape during keratinocyte differentiation. The cooperation between p63 and its co-regulating factors, such as RUNX1, is important for the finetuning of gene expression. Overall design: RNA-Seq, H3K4me3 ChIP-Seq and H3K27me3 ChIP-Seq of keratinocytes during differentiation on day0(proliferation), day2(early differentiation), day4(mid differentiation) and day7(late differentiation). RUNX1 ChIP-Seq of keratinocytes at the proliferation stage(day0).

Publication Title

Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40672
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of Gram-positive bacteria to heme cytotoxic fecal water, which is not observed for Gram-negative bacteria, allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll- like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.

Publication Title

Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE34253
Dietary heme modulates microbiota and mucosa of mouse colon without significant host-microbe cross talk
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Previously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the Firmicutes in colonic content. This shift was caused by a selective susceptibility of Gram-positive bacteria to the heme cytotoxic fecal waters, which is not observed for Gram-negative bacteria allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There were no signs of sensing of the bacteria by the mucosa, as changes in TLR signaling were not present. This lack of microbe-host cross talk indicated that the changes in microbiota do not play a causal role in the heme-induced hyperproliferation.

Publication Title

Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE77685
Whole transcript expression profiling of umbilical cord- and bone marrow-derived stem cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Mesenchymal stromal cells (MSCs) are multipotent stem cells with potent immunosuppressive and trophic support functions. Although bone marrow is considered the golden standard to isolate classical MSCs (BM-MSC), MSC-like cells are currently also derived from other, more easily accessible extra-embryonic tissues such as the umbilical cord. In this study we compared the gene expression profile of human Wharton's jelly explant-derived MSC cultures with two adult MSC populations derived from bone marrow, namely BM-MSC and multipotent adult progenitor cells (MAPC).

Publication Title

Human Wharton's Jelly-Derived Stem Cells Display a Distinct Immunomodulatory and Proregenerative Transcriptional Signature Compared to Bone Marrow-Derived Stem Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18636
Transcriptomic profiling of Cop1-deficient embryos
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In order to assess the physiological role of Cop1 in vivo we generated mice that do no longer express the protein. Cop1KO mice die at around E10.5 of embryonic development. In order to gain insights into the molecular mechanisms that cause the embryonic death we compared the genome-wide gene expression profile of E9.5 wild-tytpe and Cop1-null embryos. The data do not support a role for Cop1 in the regulation of the p53 pathway in vivo and highlight a role for Cop1 in cardiovascular development and/or angiogenesis. The abstract of the associated publication is as follows:Biochemical data have suggested conflicting roles for the E3 ubiquitin ligase Cop1 in tumourigenesis. Here we present the first in vivo investigation of the role of Cop1 in cancer aetiology. We used an innovative genetic approach to generate an allelic series of Cop1 and show that Cop1 hypomorphic mice spontaneously develop malignancy at a high frequency in their first year of life and are highly susceptible to radiation-induced lymphomagenesis. Biochemically, we show that Cop1 regulates c-Jun oncoprotein stability and modulates c-Jun/AP1 transcriptional activity in vivo. Cop1-deficiency stimulates cell proliferation in a c-Jun-dependent manner. We conclude that Cop1 is a tumour suppressor that antagonizes c-Jun oncogenic activity in vivo.

Publication Title

Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24234
Experimental systems biology: Lessons from an integrated, multi-laboratory study in yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

We undertook an inter-laboratory effort to generate high-quality quantitative data for a very large number of cellular components in yeast using transcriptome and metabolome analysis. We ensured the high-quality of the experimental data by evaluating a wide range of sampling and measurement techniques. The data were generated for two different yeast strains, each growing under two different growth conditions and based on integrated analysis of the high-throughput data we hypothesize that differences in growth rates and yields on glucose between the two strains are due to differences in protein metabolism.

Publication Title

Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP151935
Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: Follicle-stimulating hormone, retinoic acid and androgens
  • organism-icon Danio rerio
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

After an acclimatization period with increasing temperature (from 27 to 35째C; ~1째C increment/day), adult zebrafish males were exposed to 35째C for 14 days and injected with the cytostatic agent busulfan (single intraperitoneal injection after 7 days at 35째C; 40 mg/Kg). Then, fish were placed back to normal water temperature and testis samples collected at different time points. Morphological analysis of testicular samples showed maximum germ cell depletion 10 days post busulfan injection (i.e. 10 dpi) and the recovery of endogenous spermatogenesis ~14 dpi. Total RNA was isolated from (1) testes of untreated adult control zebrafish, (2) germ cell-depleted, and (3) testis tissue at the beginning of the recovery period, and selected samples were used for library preparation Overall design: 15 samples in total were analyzed: 5 biological replicates from control testis samples, 5 biological replicates from depleted testis samples and 5 biological replicates from recovering testis samples

Publication Title

Endocrine and local signaling interact to regulate spermatogenesis in zebrafish: follicle-stimulating hormone, retinoic acid and androgens.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP089896
Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh
  • organism-icon Danio rerio
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Fsh-mediated regulation of zebrafish spermatogenesis includes modulating the expression of testicular growth factors. Here, we study if and how two Sertoli cell-derived Fsh-responsive growth factors, anti-Müllerian hormone (Amh; inhibiting steroidogenesis and germ cell differentiation) and insulin-like growth factor 3 (Igf3; stimulating germ cell differentiation), cooperate in regulating spermatogonial development. In dose response and time course experiments with primary testis tissue cultures, Fsh upregulated igf3 transcript levels and down-regulated amh transcript levels; igf3 transcript levels were more rapidly up-regulated and responded to lower Fsh concentrations than were required to decrease amh mRNA levels. Quantification of immunoreactive Amh and Igf3 on testis sections showed that Fsh increased slightly Igf3 staining but decreased clearly Amh staining. Studying the direct interaction of the two growth factors showed that Amh compromised Igf3-stimulated proliferation of type A (both undifferentiated [Aund] and differentiating [Adiff]) spermatogonia. Also the proliferation of those Sertoli cells associated with Aund spermatogonia was reduced by Amh. To gain more insight into how Amh inhibits germ cell development, we examined Amh-induced changes in testicular gene expression by RNA sequencing. The majority (69%) of the differentially expressed genes was down-regulated by Amh, including several stimulators of spermatogenesis, such as igf3 and steroidogenesis-related genes. At the same time, Amh increased the expression of inhibitory signals, such as inha and id3, or facilitated prostaglandin E2 (PGE2) signaling. Evaluating one of the potentially inhibitory signals, we indeed found in tissue culture experiments that PGE2 promoted the accumulation of Aund at the expense of Adiff and B spermatogonia. Our data suggest that an important aspect of Fsh bioactivity in stimulating spermatogenesis is implemented by restricting the different inhibitory effects of Amh and by counterbalancing them with stimulatory signals, such as Igf3 Overall design: 10 samples in total were analyzed: 5 biological replicates from control testis samples and 5 biological replicates from Amh-treated testis samples (all co-incubated with 11KT)

Publication Title

Antagonistic regulation of spermatogonial differentiation in zebrafish (Danio rerio) by Igf3 and Amh.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32034
Tissue-specific differences in PPAR control of macrophage function.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PPAR is known for its anti-inflammatory actions in macrophages. However, which macrophage populations express PPAR in vivo and how it regulates tissue homeostasis in the steady state and during inflammation is not completely understood. We show that lung and spleen macrophages constitutively expressed PPAR, while other macrophage populations did not. Recruitment of monocytes to sites of inflammation was associated with induction of PPAR as they differentiated to macrophages. Its absence in these macrophages led to failed resolution of inflammation, characterized by persistent, low-level recruitment of leukocytes. Conversely, PPAR agonists supported an earlier cessation in leukocyte recruitment during resolution of acute inflammation and likewise suppressed monocyte recruitment to chronically inflamed atherosclerotic vessels. In the steady state, PPAR deficiency in macrophages had no obvious impact in the spleen but profoundly altered cellular lipid homeostasis in lung macrophages. Reminiscent of pulmonary alveolar proteinosis, LysM-Cre x PPARflox/flox mice displayed mild leukocytic inflammation in the steady-state lung and succumbed faster to mortality upon infection with S. pneumoniae. Surprisingly, this mortality was not due to overly exuberant inflammation, but instead to impaired bacterial clearance. Thus, in addition to its anti-inflammatory role in promoting resolution of inflammation, PPAR sustains functionality in lung macrophages and thereby has a pivotal role in supporting pulmonary host defense.

Publication Title

Systemic analysis of PPARγ in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon SRP189843
Engram-specific transcriptome profiling of contextual memory consolidation
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P=6.2x10-13), including Atf3 (P=2.4x10-41), Penk (P=1.3x10-15), and Kcnq3 (P=3.1x10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory. Overall design: Biological replicates: Fear conditioned: n=14, No shock controls: n=4, Home cage controls:n=3. The contents 10 dVenus+ and 10 dVenus- cells were aspirated from each animal (biological replicate)

Publication Title

Engram-specific transcriptome profiling of contextual memory consolidation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact