refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 84 results
Sort by

Filters

Technology

Platform

accession-icon GSE36630
Transcriptomal effects of four-day exposure to estradiol on mouse primary culture urogenital sinus mesenchymal cells of fetal mouse prostate
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ER) and androgen receptors and convert stimuli from estrogens and androgens into signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2) in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM) for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM) induce genes involved in cell adhesion, morphological tissue development, and sterol biosynthesis but suppress genes involved in growth factor signaling and cell adhesion. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM) were identified, and their enrichment in the glycolytic pathway was demonstrated. At the highest dose (100 nM), E2 induced genes enriched not only for cell adhesion but also steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas soluble growth factors might play significant roles when estrogen level is high.

Publication Title

Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16854
Expression data from estradiol-treated fetal urogenital sinus mesenchyme cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Developmental estrogen exposure causes permanent alterations to mouse prostate development. Fetal prostatic mesenchyme cells regulate epithelial cell proliferation and differentiation, and alterations to mesenchymal regulation of prostate epithelial cell proliferation and differentiation may lead to permanent changes in gland structure and function. Our goal was to understand how mesenchymal cells convert estrogen signaling to stimuli that affect epithelial cells. We used microarrays to identify estrogen-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells.

Publication Title

Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP200569
Characterization of Slfn3KO mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA sequencing was performed on intestinal mucosa from male and female Slfn3KO mice to determine gene expression changes related to decreased weight gain in the Slfn3KO mice Overall design: 4 sample groups: Male wildtype and Slfn3KO, Female wildtype and Slfn3KO

Publication Title

Loss of Schlafen3 influences the expression levels of Schlafen family members in ileum, thymus, and spleen tissue.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE27993
Expression data from human periodontal ligament
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to detect the differences in gene-expression of the periontal ligament between patients with healthy periodontal ligament and patients with periodontitis

Publication Title

The pathology of bone tissue during peri-implantitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57631
Comparison of the gene expression of periimplantitis affected peri-implant tissue and healthy peri-implant tissue in vivo in human.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study we want to ascertain the differences and similarities of infected and inflammated peri implant tissue versus healthy peri implant tissue at the mRNA level.

Publication Title

The pathology of bone tissue during peri-implantitis.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE63358
Expression data from invariant natural killer T (iNKT) cells in spleen and adipose tissue
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adipose tissue iNKT cells have different functions than iNKT cells in the blood and other organs.

Publication Title

Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP070499
Odd skipped-related 1 (Osr1) identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We sequenced total RNAs that were extracted from Osr1-expressing cells isolated by FACS-sorting from E13.5 limbs of two heterozygous (Osr1 GCE/+) and two homozygous (Osr1 GCE/GCE) mouse embryos. Overall design: Gene expression profiling of Osr1-expressing cells at E13.5

Publication Title

Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE59506
Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neuronal function critically depends on coordinated subcellular distribution of mRNAs. Disturbed mRNA processing and axonal transport has been found in spinal muscular atrophy and could be causative for dysfunction and degeneration of motoneurons. Despite the advances made in characterizing the transport mechanisms of several axonal mRNAs, an unbiased approach to identify the axonal repertoire of mRNAs in healthy and degenerating motoneurons has been lacking. Here we used compartmentalized microfluidic chambers to investigate the somatodendritic and axonal mRNA content of cultured motoneurons by microarray analysis. In axons, transcripts related to protein synthesis and energy production were enriched relative to the somatodendritic compartment. Knockdown of Smn, the protein deficient in spinal muscular atrophy, produced a large number of transcript alterations in both compartments. Transcripts related to immune functions, including MHC class I genes, and with roles in RNA splicing were upregulated in the somatodendritic compartment. On the axonal side, transcripts associated with axon growth and synaptic activity were downregulated. These alterations provide evidence that subcellular localization of transcripts with axonal functions as well as regulation of specific transcripts with nonautonomous functions is disturbed in Smn-deficient motoneurons, most likely contributing to the pathophysiology of spinal muscular atrophy.

Publication Title

Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73146
Gene expression over the course of xylem tracheary element formation in cell suspension cultures of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcriptomic analysis of gene expression during the differentiation of cell suspension cultures into tracheary elements using the biological system published by Pesquet et al., Current Biology (2010): tracheary element differentiation was triggered by externally supplying hormone-free habituated cell suspension cultures of Arabidopsis thaliana Col-0 with auxin, cytokinin and epibrassinolides; RNA samples extracted from 3 independent time-courses every 12h from 0h to 4 days were analyzed using ATH1 Arabidopsis Affymetrix micro-array

Publication Title

Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE66113
siRNA induced silencing of CITED1 in HT144 human melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

To investigate the function of CITED1 in melanoma, its expression was transiently down regulated using CITED1-targeting siRNA. The HT144 melanoma cell line was chosen as it had a relatively high level of detectable CITED1 mRNA and protein expression.

Publication Title

Loss of CITED1, an MITF regulator, drives a phenotype switch in vitro and can predict clinical outcome in primary melanoma tumours.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact