refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 259 results
Sort by

Filters

Technology

Platform

accession-icon GSE49663
Gene expression in the blood of Live Attenuated Rev-Independent NefSIV infected Rhesus macaques during acute infection
  • organism-icon Macaca mulatta
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Rhesus macaques (RMs) inoculated with live-attenuated Rev-Independent Nef simian immunodeficiency virus (Rev-Ind NefSIV) as adults or neonates controlled viremia to undetectable levels and showed no signs of immunodeficiency over 6-8 years of follow-up. We tested the capacity of this live-attenuated virus to protect RMs against pathogenic, heterologous SIVsmE660 challenges

Publication Title

Live attenuated Rev-independent Nef¯SIV enhances acquisition of heterologous SIVsmE660 in acutely vaccinated rhesus macaques.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP131016
Effect of BRD4 deletion on the Transcriptome of Different Thymocyte Subpopulations
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

By conditionally deleting BRD4 at various stages of thymic differentiation, we have established that BRD4 deficiency selectively affects a unique developmental subpopulation of thymocytes. Overall design: We examined by RNA-seq the effect on gene expression of BRD4 deletion in ex vivo DN, ISP, DP, CD4 and CD8 thymocyte subpopulations. The analysis was also performed on WT or BRD4 deleted ISP and DP thymocytes cultured for 16 hours at 37oC In this analysis, the conditional deletion of BRD4 (cKO) is achieved using the LCK-cre Transgene.

Publication Title

Immature CD8 Single-Positive Thymocytes Are a Molecularly Distinct Subpopulation, Selectively Dependent on BRD4 for Their Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE6566
Strength of T cell stimulation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The strength of T cell stimulation determines IL-7 responsiveness, recall potential and lineage commitment of primed human CD4+IL-7Rhi T cells

Publication Title

The strength of T cell stimulation determines IL-7 responsiveness, secondary expansion, and lineage commitment of primed human CD4+IL-7Rhi T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP139608
Next Generation Sequencing (NGS) of expression profile from unstimulated and LPS stimulated bone marrow derived macrophages from control and BRD4 conditional KO mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Method: mRNA profiles were generated from pair-end sequencing of duplicate samples using Illumina Hiseq 2000. Results: Genes with an expression change of more than 2 fold were considered to be differentially expresed Overall design: Macrophages are cells belongs to innate immune system, which response to pathogen by the production of inflammatory proteins those that are effective in both combating pathogen and wound healing. Using microarray approach with BET inhibitors it was shown that many of the inflammatory response genes were under control of BET proteins. Purpose of this study was to assess the effect of BRD4 KO in NGS derived transcriptome profiles of both stimulated and unstimulated macrophages.

Publication Title

BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP057639
Tracking the fate of pathogenic CD4 T helper cells in vivo.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Inflammation is a beneficial host response to infection, but it also contributes to inflammatory disease if unregulated. The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases. These cells exhibit both instability (i.e., they can cease to express their signature cytokine, IL-17A) and plasticity (i.e., they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation. However technical limitations prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses. Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as “transdifferentiation”. Furthermore, while Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate. Here we used two novel fate-mapping mouse models to track Th17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of Th17 into regulatory T cells was illustrated by a global change in their transcriptome and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF- ß signaling and the aryl hydrocarbon receptor (AhR) in conversion. Thus, Th17 transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases. Overall design: We isolated intestinal lymphocytes from two independent experiments, each using 5 mice injected with anti-CD3 mAb. Th17, exTh17, Tr1 exTh17, Tr1, Foxp3 Treg and Foxp3 IL-10+ Treg cell populations were FACS-sorted from these two independent experiments and the cells of each population were pooled before the analysis. Around 5,000 cells for each population were processed.

Publication Title

Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68853
Identification of proliferative and mature -cells in the islet of Langerhans
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Insulin-dependent diabetes is a complex multifactorial disorder characterized by

Publication Title

Identification of proliferative and mature β-cells in the islets of Langerhans.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP165794
Molecular and functional heterogeneity of IL-10-producing CD4+ T cells [Mouse Bulk-seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

IL-10 is a prototypical anti-inflammatory cytokine, which is fundamental to the maintenance of immune homeostasis, especially in the intestine. There is an assumption that cells producing IL-10 have an immunoregulatory function. However, here we report that IL-10-producing CD4+ T cells are phenotypically and functionally heterogeneous. By combining single cell transcriptome and functional analyses, we identified a subpopulation of IL-10-producing Foxp3Neg CD4+ T cells that displays regulatory activity unlike other IL-10-producing CD4+ T cells, which are unexpectedly pro-inflammatory. The combinatorial expression of co-inhibitory receptors is sufficient to discriminate IL-10-producing CD4+ T cells with regulatory function from others and to identify them across different tissues and disease models in mice and humans. These regulatory IL-10-producing Foxp3Neg CD4+ T cells have a unique transcriptional program, which goes beyond the regulation of IL-10 expression. Finally, we found that patients with Inflammatory Bowel Disease (IBD), demonstrate a deficiency in this specific regulatory T-cell subpopulation. Overall design: We carried out high troughput RNA sequencing of RNA isolated from IL-10 producing Foxp3- CD4+ T-cells, which were isolated from the spleen of mice treated with anti-CD3 antibody.

Publication Title

Molecular and functional heterogeneity of IL-10-producing CD4<sup>+</sup> T cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE21511
EWS-FLI1 reactivates a neural crest stem cell program in human neural crest-derived mesenchymal stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Ewing sarcoma family of tumors (ESFT) are aggressive bone and soft tissue tumors of unknown cellular origin. Most ESFT express EWS-FLI1, a chimeric protein which functions as a growth-promoting oncogene in ESFT but is toxic to most normal cells. A major difficulty in understanding EWS-FLI1 function has been the lack of an adequate model in which to study EWS-FLI1-induced transformation. Although the cell of origin of ESFT remains elusive, both mesenchymal (MSC) and neural crest (NCSC) have been implicated. We recently developed the tools to generate NCSC from human embryonic stem cells (hNCSC). In the current study we used this model to test the hypothesis that neural crest-derived stem cells are the cells of origin of ESFT and to evaluate the consequences of EWS-FLI1 expression on human neural crest biology.

Publication Title

Modeling initiation of Ewing sarcoma in human neural crest cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19587
Imaging-guided microarray: Identifies molecular markers in the pathogenesis of Parkinsons disease
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The full complement of molecular pathways contributing to Parkinsons disease (PD) pathogenesis remains unknown. Here, to address this issue, we began by using a high-resolution variant of functional magnetic resonance imaging (fMRI) to pinpoint brainstem regions differentially affected by, and resistant to, the disease. Then, relying on the imaging information as a guide, we profiled gene expression levels of postmortem brain samples and used a factorial statistical model to identify a disease related decrease in the expression of the polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1). Next, a series of studies were performed to confirm the pathogenic relevance of this finding. First, to test for a causal link between polyamines and -synuclein toxicity, we investigated a yeast model expressing -synuclein. Polyamines were found to enhance the toxicity of -synuclein, and an unbiased genome-wide screen for modifiers of -synuclein toxicity identified Tpo4, a member of a family of proteins responsible for polyamine transport. Second, to test for a causal link between SAT1 activity and PD histopathology we investigated a mouse model expressing -synuclein. DENSPM (N1, N11-diethylnorspermine), a polyamine analog that increases SAT1 activity, was found to reduce PD histopathology, while Berenil (diminazene aceturate), a pharmacological agent that reduces SAT1 activity, worsened the histopathology. Third, we genotyped PD patients and controls and isolated a rare but novel variant in the SAT1 gene, although the functional significance of this genetic variant was not identified. Taken together, the results suggest that the polyamine pathway contributes to PD pathogenesis.

Publication Title

Polyamine pathway contributes to the pathogenesis of Parkinson disease.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon SRP069083
Canalization of gene expression is a major signature of regulatory cold adaptation in temperate "Drosophila melanogaster"
  • organism-icon Drosophila melanogaster
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome analysis may provide means to investigate the underlying genetic causes of shared and divergent phenotypes in different populations and help to identify potential targets of adaptive evolution. Applying RNA sequencing to whole male Drosophila melanogaster from the ancestral tropical African environment and a very recently colonized cold-temperate European environment at both standard laboratory conditions and following a cold shock, we seek to uncover the transcriptional basis of cold adaptation. In both the ancestral and the derived populations, the predominant characteristic of the cold shock response is the swift and massive upregulation of heat shock proteins and other chaperones. Although we find ~30% of the genome to be differentially expressed following a cold shock, only relatively few genes (n=26) are up- or down-regulated in a population-specific way. Intriguingly, 24 of these 26 genes show a greater degree of differential expression in the African population. Likewise, there is an excess of genes with particularly strong cold-induced changes in expression in Africa on a genome-wide scale. The analysis of the transcriptional cold shock response most prominently reveals an upregulation of components of a general stress response, which is conserved over many taxa and triggered by a plethora of stressors. Despite the overall response being fairly similar in both populations, there is a definite excess of genes with a strong cold-induced fold-change in Africa. This is consistent with a detrimental deregulation or an overshooting stress response. Thus, the canalization of European gene expression might be responsible for the increased cold tolerance of European flies. Overall design: mRNA profiles of whole Drosophila melanogaster adult males from a Africa (4 lines) and Europe (4 lines) during a 7h cold shock experiment. Samples include room temperature controls, 3.5h into the cold shock, 15 minutes after recovery and 90 minutes after recovery. 2 biological replicates each.

Publication Title

Canalization of gene expression is a major signature of regulatory cold adaptation in temperate Drosophila melanogaster.

Sample Metadata Fields

Sex, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact