refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 526 results
Sort by

Filters

Technology

Platform

accession-icon SRP151785
Transcriptional signature of murine tracheal brush cells identified by RNA-Seq
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Purpose: Tracheal epithelial brush cells are rare chemosensory cells defined by their expression of elements of the bitter taste transduction system, and known to activate the cholinergic nervous system in the murine lung. Similar chemosensory cells in the intestine can generate lipid mediators and pro-inflammatory cytokines but whether brush cell can contribute to airway inflammation is unknown. Furthermore, despite the advances in understanding chemosensory cell effector functions, the receptors that mediate chemosensory cell activation and expansion beyond taste receptors in any compartment remain largely unknown. Methods: In this study, we isolated tracheal brush cells by FACS from naïve ChATBAC-eGFP mice with knockin of eGFP within a BAC spanning the acetylcholine transferase locus, marking brush cells in the epithelium and performed transcriptome profiling using low input RNA sequencing. We compared tracheal brush cells to EpCAM+ epithelial cells and CD45+ hematopoetic cells in naive mice. Results: When compared to EpCAM+ EpCs and to CD45+ cells in the airway, principal component analysis demonstrated that brush cells grouped quite distinctly. This brush cell distinction relative to EpCAM+ cells, was further reflected in the striking number of highly differentially expressed genes. This included 1305 genes expressed at 4-fold or higher levels in EpCAM+eGFP+ cells (brush cells), of which 418 genes were expressed at 32-fold or higher levels in brush cells. Conclusions: Our study represents the first detailed analysis of the transcriptome of tracheal brush cells and identifies a unique set of genes that are primarily expressed in brush cells including the bitter taste transduction system, synthenic machinery for several pro-inflammatory lipid mediators and HoxA2 transciptional factors. Overall design: Examination of gene expression of tracheal brush cells (ChAT-eGFP), EpCAM+ (EpCAM) tracheal epithelial cell and CD45+ hematopoetic cells in naïve mice.

Publication Title

The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP148459
RNA-seq of medullary thymic epithelial cell (mTEC) subsets in inducible Aire-lineage tracing mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The goal of the study was to sequence mRNA expression from sorted medullary thymic epithelial cell (mTEC) subsets in inducible Aire-CreERT2.R26-Stopfl-tdTomato lineage tracing mice after a pulse chase. Four cell subsets were sorted 7 days after a single 2mg pulse of tamoxifen administered by oral gavage. 4 biological replicates (1,2,3,4) were collected derived from 12 pooled thymi per replicate. From the DAPI-;CD45-;EpCAM+ TEC pool, cells were sorted as: pre-Aire (MHCIIlo;RFP-), early-Aire (MHCIIhi;RFP-), late-Aire (MHCIIhi;RFP+), and post-Aire (MHCIIlo;RFP+). The data were used to identify differentially expressed genes across the four mTEC subsets to examine mTEC heterogeneity and identify novel mTEC subpopulations. Overall design: Four biological replicates (12 pooled thymi per replicate) of each of four mTEC subsets were sorted from Aire-lineage tracing mice 7 days after pulse-chase with tamoxifen.

Publication Title

Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP133209
Developmental origins define epigenomic differences between subcutaneous and visceral adipocytes [RNA_seq_Whole]
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To understand the molecular differences between adipocytes and their contribution to cell-type specific function, we comprehensively characterised the transcriptomes and DNA methylomes using WGBS of isolated adipocytes from the SAT and VAT from normal weight individuals Overall design: WGBS, RNA-seq, and microarrays were used to study epigenetics and transcriptomics human cancer isolated subcutaneous (abdominal - SA) and vieceral (omental - VA) adipocyte, peripheral blood leukocytes (PBL) and visceral adipose tissue (VAT).

Publication Title

Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP133095
Developmental origins define epigenomic differences between subcutaneous and visceral adipocytes [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To understand the molecular differences between adipocytes and their contribution to cell-type specific function, we comprehensively characterised the transcriptomes and DNA methylomes using WGBS of isolated adipocytes from the SAT and VAT from normal weight individuals Overall design: WGBS, RNA-seq, and microarrays were used to study epigenetics and transcriptomics human cancer isolated subcutaneous (abdominal - SA) and vieceral (omental - VA) adipocyte, peripheral blood leukocytes (PBL) and visceral adipose tissue (VAT).

Publication Title

Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP061870
Regulatory T cells Maintain Lung Function Upon Infectious Damage
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-Seq analysis of Treg cell subsets isolated from lungs of Il10GFPFoxp3Thy1.1 mice. Thy1.1+ Treg cells were FACS-sorted into IL-10–IL-18R–, IL-10+IL-18R– and IL10–IL-18R+ populations on day 5 following intranasal infection with 0.5 LD50 PR8-OTI influenza virus. Overall design: mRNA profiles of each Thy1.1+ Treg cell population (IL-10–IL-18R–, IL-10+IL-18R– and IL10–IL-18R+) from lungs on day 5 following influenza infection from 5 infected mice, sorted into TRIzol LS reagent.

Publication Title

A Distinct Function of Regulatory T Cells in Tissue Protection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP166097
RNA-seq of bulk Treg and Tconv cells from murine liver and lymphoid tissues
  • organism-icon Mus musculus
  • sample-icon 381 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

With the aim of understanding how Treg cells in highly vascularized tissues are related to Treg cells in other organs, we performed RNA-seq analysis of bulk Treg and Tconv cells isolated from liver, blood, spleen, and the liver-draining portal lymph node. This revealed a clear separation of cell transcriptomes by both tissue and Treg/Tconv identity, with cells from the liver falling between blood- and spleen-derived cells. Compared to splenic Treg cells, hepatic Treg cells were enriched for genes related to proliferation and activation, and genes encoding chemokine and cytokine receptors. Overall design: RNA was extracted from FACS-purified Tconv and Treg cells from various tissues of Foxp3Thy1.1 mice. Each sample contains cells pooled from 3 mice. 2 cell types from each of 4 tissues x 3 replicates = 24 samples.

Publication Title

CD49b defines functionally mature Treg cells that survey skin and vascular tissues.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP166106
RNA-seq of Treg and Tconv subsets from murine spleen
  • organism-icon Mus musculus
  • sample-icon 89 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

While unique subsets of Treg cells have been described in some non-lymphoid tissues, their relationship to Treg cells in secondary lymphoid organs and circulation remains unclear. We have identified a recirculating and highly suppressive effector Treg cell subset that expresses the a2 integrin, CD49b, and exhibits a unique tissue distribution. To identify genes and pathways enriched in CD49b+ Treg cells, we performed RNA-seq of splenic CD49b+ and CD49b- Treg cells that were of otherwise similar activation status based on expression of CD44 and CD62L. This revealed that splenic CD49b+ Treg cells express genes related to migration and activation, but are relatively depleted of genes whose expression is TCR-dependent in Treg cells. These results shed light on the identity and development of a functionally potent subset of mature effector Treg cells that recirculates through and surveys peripheral tissues. Overall design: RNA was extracted from FACS-purified splenic Tconv and Treg cells of different activation states from Foxp3GFP mice. 2 CD4+ T-cell lineages x 3 activation states x 4 replicates. There is no sample 3 (RNA was degraded); there are 23 samples in total.

Publication Title

CD49b defines functionally mature Treg cells that survey skin and vascular tissues.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP165223
Single-cell RNA-seq of splenic Treg and Tconv cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

While unique subsets of Treg cells have been described in some non-lymphoid tissues, their relationship to Treg cells in secondary lymphoid organs and circulation remains unclear. We have identified a short-lived effector Treg cell subset that expresses the a2 integrin, CD49b, and exhibits a unique tissue distribution. Projection of the CD49b+ Treg signature onto the Treg phenotypic landscape as inferred by single-cell RNA-seq analysis, placed these cells at the apex of the Treg developmental trajectory. These results shed light on the identity and development of a functionally potent subset of mature effector Treg cells that recirculate through and survey peripheral tissues. Overall design: Single-cell RNA-seq libraries (10x Genomics) were prepared from FACS-purified Tconv and Treg cells from pooled spleens of Foxp3GFP mice.

Publication Title

CD49b defines functionally mature Treg cells that survey skin and vascular tissues.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP061546
A mechanism for expansion of the regulatory T cell repertoire and its role in enforcing self-tolerance.
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Thymic Treg cells, mature non-Treg CD4+ single positive thymocytes, peripheral (spleen) resting and activated Treg cells were sorted from Foxp3-gfp reporter (wid type, WT) mice or Foxp3 enhancer CNS3 knockout (KO, carrying the same GFP reporter) mice. Total RNA was extracted and used for RNA sequencing to assess gene expression profiles. Overall design: Two 6-8 week old littermates of male Foxp3-gfp and Foxp3?CNS3-gfp mice were used to sort Treg cells and conventional CD4+ T cells. Lymphocyte preparation and electronic sorting were performed at the same time. RNA extraction, SMART amplification, library preparation were conducted in parallel.

Publication Title

A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9941
Gene expression profiles after lentiviral transduction
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human mesenchymal stem cells (hMSCs) were transduced using lentivirus containing the the triple fusion reporter gene fluc-mrfp-ttk. Microarray studies of hMSCs after transduction with the triple reporter genes using lentivirus were performed to study the effects of transduction on stem cell properties using an oligonucleotide human microarray. Transduced cells were sorted by FACS. Cells with high and low signals were ftacrtionated, and gene expression profiles were determined.

Publication Title

Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact