refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 4306 results
Sort by

Filters

Technology

Platform

accession-icon GSE31613
Transcriptional architecture of the primate neocortex
  • organism-icon Macaca mulatta
  • sample-icon 250 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Genome-wide transcriptional profiling allows characterization of the molecular underpinnings of neocortical organization, including cortical areal specialization, laminar cell type diversity and functional anatomy. Microarray analysis of individual cortical layers across sensorimotor and association cortices in rhesus macaque demonstrated robust and specific laminar and areal molecular signatures driven by differential expression of genes associated with specialized neuronal function. Gene expression corresponding with laminar architecture was generally similar across cortical areas, although genes with robust areal patterning were often highly laminar as well, and these patterns were more highly conserved between macaque and human as compared to mouse. Layer 4 of primate primary visual cortex displayed a distinct molecular signature compared to other cortical regions, a specialization not observed in mouse. Overall, transcriptome-based relationships were strongest between proximal layers in a cortical area, and between neighboring areas along the rostrocaudal axis, reflecting in vivo cortical spatial topography and therefore a developmental imprint.

Publication Title

Transcriptional architecture of the primate neocortex.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE39697
Molecular Signatures of Neurogenesis in the Hippocampal Subgranular Zone of Rodents
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We sought to find molecular signatures of the SGZ cell types, and to characterize the molecular pathways and transcription factor cascades that define the neurogenic niche. We used laser capture microdissection and DNA microarrays to profile gene expression in the inner (SGZ) and outer portions of the dentate gyrus (DG). Since the vast majority of the cells in the DG are mature granule cells, we compared the expression of the inner and outer portions to reveal molecular markers for the less numerous populations of the SGZ.

Publication Title

Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE56049
Transcriptional effects of CSB and the CSB-PGBD3 fusion protein in CSB-null UVSS1KO cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cockayne syndrome is a segmental progeria most often caused by mutations in the CSB gene encoding a SWI/SNF-like ATPase required for transcription-coupled DNA repair (TCR). Over 43 Mya before marmosets diverged from humans, a piggyBac3 (PGBD3) transposable element integrated into intron 5 of the CSB gene. As a result, primate CSB genes now generate both CSB protein and a conserved CSB-PGBD3 fusion protein in which the first 5 exons of CSB are alternatively spliced to the PGBD3 transposase. We show by microarray analysis that expression of the fusion protein alone in CSB-null UV-sensitive syndrome cells (UVSS1KO) cells induces an interferon-like response that resembles both the innate antiviral response and the prolonged interferon response normally maintained by unphosphorylated STAT1 (U-STAT1); moreover, as might be expected based on conservation of the fusion protein, this potentially cytotoxic interferon-like response is largely reversed by coexpression of functional CSB protein. Interestingly, expression of CSB and the CSB-PGBD3 fusion protein together, but neither alone, upregulates the insulin growth factor binding protein IGFBP5 and downregulates IGFBP7, suggesting that the fusion protein may also confer a metabolic advantage, perhaps in the presence of DNA damage. Finally, we show that the fusion protein binds in vitro to members of a dispersed family of 900 internally deleted piggyBac elements known as MER85s, providing a potential mechanism by which the fusion protein could exert widespread effects on gene expression. Our data suggest that the CSB-PGBD3 fusion protein is important in both health and disease, and could play a role in Cockayne syndrome.

Publication Title

The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE1294
Expression profile of genes in normal and Down syndrome mouse brains
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74B Version 2 Array (mgu74bv2), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.

Publication Title

Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1281
Expression profile of genes in normal and Down syndrome mouse brains MGU74A
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.

Publication Title

Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE1282
Expression profile of genes in normal and Down syndrome mouse brains MGU74B
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74B Version 2 Array (mgu74bv2), Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.

Publication Title

Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE138263
Harnessing the benefits of neuroinflammation: Generation of macrophages/microglia with remarkable remyelinating properties
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Excessive inflammation within the central nervous system is injurious, but an immune response is also required for its repair. Macrophages are versatile cells that adopt different properties depending upon their microenvironment. Exposing macrophages to interleukin-4 and -13 (IL4/IL13) has incurred interest for their reparative properties. Unexpectedly, while macrophages exposed to the classic pro-inflammatory signals (interferon-γ/lipopolysaccharide, IFN/LPS) killed neurons and oligodendrocytes in culture, the addition of LPS to IL4/IL13-treated macrophages profoundly elevated IL10, repair metabolites (lactate, ornithine), glucose metabolism and the oligodendrocyte-trophic heparin-binding epidermal growth factor (HBEGF); cells did not display pro-inflammatory or neurotoxic features.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE57003
Generation of CNS neural stem cells and PNS derivatives from neural crest derived peripheral stem cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56999
Generation of CNS neural stem cells and PNS derivatives from neural crest derived peripheral stem cells [Dataset 1]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neural crest-derived neural stem cells (NCSCs) from the embryonic PNS can be reprogrammed in neurosphere culture (NS) to rNCSCs that produce CNS progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord (SCSCs). Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3- and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed towards a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSCs. These findings show that embryonic NCSCs acquire a full CNS identity in neurosphere culture. In contrast, MSCs are generated from adult pNCSCs and BMP NCSCs, which reveals that postmigratory NCSCs are a source for MSCs up to the adult stage.

Publication Title

Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57001
Generation of CNS neural stem cells and PNS derivatives from neural crest derived peripheral stem cells [Dataset 2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neural crest-derived neural stem cells (NCSCs) from the embryonic PNS can be reprogrammed in neurosphere culture (NS) to rNCSCs that produce CNS progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord (SCSCs). Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3- and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed towards a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSCs. These findings show that embryonic NCSCs acquire a full CNS identity in neurosphere culture. In contrast, MSCs are generated from adult pNCSCs and BMP NCSCs, which reveals that postmigratory NCSCs are a source for MSCs up to the adult stage.

Publication Title

Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact