refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE75744
Effect of Cathepsin L exposure on endothelial cell transcriptomics
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Cathepsin L is a lysosomal protease that is secreted by several cancer cells. Cathepsin L upregulation has been widely associated with poor clinical outcome and increased metastatic incidence. However, whether Cathepsin L participates in tumor angiogenesis remains less studied. Our study showed a significant activation of angiogenic capacity of endothelial cells in presence of purified or tumor derived Cathepsin L. In addition, Cathepsin L exposure led to a significant increase in the proliferative capacity of endothelial cells. While the ability of Cathepsin L to promote endothelial cell sprouting, migration, invasion and tube formation can be attributed to its proteolytic effects on extracellular matrix, how it promotes endothelial cell proliferation remains obscure. The objective of this study was to test if Cathepsin L exposure can activate signaling cascades and gene expression leading to proliferation of endothelial cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE21601
Expression data from Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Nitrogen and light are two major regulators of plant metabolism and development. While genes involved in the control of each of these signals have begun to be identified, regulators that integrate gene responses to nitrogen and light signals have yet to be determined.

Publication Title

Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38102
Expression data from Oryza sativa and Arabidopsis thaliana
  • organism-icon Oryza sativa, Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.

Publication Title

Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE46741
Arabidopsis circadian regulatory networks
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE46621
Expression data from Arabidopsis thaliana seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Light pulses at the end of the day or night be able to control the phase of the circadian clock. Pulses in the middle of the night has not effect on the circadian oscilations.

Publication Title

LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE64755
Global transcriptome analysis identifies shade avoidance-related genes regulated by BBX24 in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In seedlings, the induction of shade avoidance syndrome (SAS) involves a rapid up-regulation for known shade marker genes and subsequently activates an interacting network of various hormones that will eventually lead to cell elongation. We found that the B-box protein AtBBX24 have positive effects on the SAS (positive regulators). Global expression analysis of col and bbx24 seedlings reveals that a large number of genes involved in hormonal signaling pathways are positively regulated by BBX24 in response to simulated shade.

Publication Title

The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact