refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3435 results
Sort by

Filters

Technology

Platform

accession-icon GSE143151
The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE107033
Endothelial gene expression analysis
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE143150
The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition [microarray]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Human Exon 1.0 ST Array (huex10st)

Description

Endothelial cells play an important role in maintenance of the vascular system and the repair after injury. Under pro-inflammatory conditions, endothelial cells can acquire a mesenchymal phenotype by a process named endothelial-to-mesenchymal transition (EndMT), which affects the functional properties of endothelial cells. Here, we investigated the epigenetic control of EndMT. We show that the histone demethylase JMJD2B is induced by EndMT promoting pro-inflammatory and hypoxic conditions. Silencing of JMJD2B reduced TGF-β2-induced expression of mesenchymal genes and prevented the alterations in endothelial morphology and impaired endothelial barrier function. Endothelial-specific deletion of JMJD2B in vivo confirmed a reduction of EndMT after myocardial infarction. EndMT did not affect global H3K9me3 levels but induced a site-specific reduction of repressive H3K9me3 marks at promoters of mesenchymal genes, such as Calponin (CNN1), and genes involved in TGF-β signaling, such as AKT Serine/Threonine Kinase 3 (AKT3) and sulfatase 1 (SULF1). Silencing of JMJD2B prevented the EndMT-induced reduction of H3K9me3 marks at these promotors and further repressed these EndMT-related genes. Our study reveals that endothelial identity and function is critically controlled by the histone demethylase JMJD2B, which is induced by EndMT-promoting pro-inflammatory and hypoxic conditions and support the acquirement of a mesenchymal phenotype.

Publication Title

The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition.

Sample Metadata Fields

Age, Cell line, Treatment

View Samples
accession-icon GSE107032
Endothelial gene expression analysis after silencing LOXL2 using siRNAs
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Impaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulates endothelial gene expression via changes in histone methylation. Using RNA deep sequencing, we find that GATA6-AS is up-regulated in endothelial cells during hypoxia. Silencing of GATA6-AS diminishes TGF-2-induced endothelial-mesenchymal transition in vitro and promotes formation of blood vessels in mice. We identify LOXL2, known to remove activating H3K4me3 chromatin marks, as a GATA6-AS-associated protein, and reveal a set of angiogenesis-related genes that are inversely regulated by LOXL2 and GATA6-AS silencing. As GATA6-AS silencing reduces H3K4me3 methylation of two of these genes, periostin and cyclooxygenase-2, we conclude that GATA6-AS acts as negative regulator of nuclear LOXL2 function.

Publication Title

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107031
Endothelial gene expression analysis after silencing the lncRNA GATA6-AS using LNA GapmeRs.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Impaired or excessive growth of endothelial cells contributes to several diseases. However, the functional involvement of regulatory long non-coding RNAs in these processes is not well defined. Here we show that the long non-coding antisense transcript of GATA6 (GATA6-AS) interacts with the epigenetic regulator LOXL2 to regulates endothelial gene expression via changes in histone methylation. Using RNA deep sequencing, we find that GATA6-AS is up-regulated in endothelial cells during hypoxia. Silencing of GATA6-AS diminishes TGF-2-induced endothelial-mesenchymal transition in vitro and promotes formation of blood vessels in mice. We identify LOXL2, known to remove activating H3K4me3 chromatin marks, as a GATA6-AS-associated protein, and reveal a set of angiogenesis-related genes that are inversely regulated by LOXL2 and GATA6-AS silencing. As GATA6-AS silencing reduces H3K4me3 methylation of two of these genes, periostin and cyclooxygenase-2, we conclude that GATA6-AS acts as negative regulator of nuclear LOXL2 function.

Publication Title

The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49192
Cell Reprogramming experiment (reprogramming cardiac fibroblasts into cardiomyocytes)
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cells were reprogrammed from cardiac fibroblasts to cardiomyocytes, in various conditions. These are the iCM cells (induced cardiomyocytes). There are both human and mouse arrays here, as seen below.

Publication Title

In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74625
KLF15
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2), Agilent-014868 Whole Mouse Genome Microarray 4x44K G4122F (Probe Name version)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE12639
diabetes mellitus and the progression of post-infarction genetic regulatory expression
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

OBJECTIVE: To study the genetic regulatory mechanisms in the remote zone of left ventricular (LV) free wall in order to partly explain the more frequent progression to heart failure after acute myocardial infarction (AMI) in diabetic rats.

Publication Title

The accelerated post-infarction progression of cardiac remodelling is associated with genetic changes in an untreated streptozotocin-induced diabetic rat model.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE55820
Gene expression profile of cardiomyocyte-like cells derived from human foreskin and lung fibroblasts, and human ES cell-derived cardiomyocytes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cardiomyocyte-like cells can be reprogrammed from somatic fibroblasts by combinations of genes, providing a new avenue for cardiac regenerative therapy. Here we show that functional cardiomyocytes can be rapidly and efficiently generated from human fibroblasts by specific combination small molecules. Microarray analysis has been used to compare the expression profile of cardiomyocyte-like cells derived from human foreskin and lung fibroblasts, and human ES cell-derived cardiomyocytes.

Publication Title

Conversion of human fibroblasts into functional cardiomyocytes by small molecules.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51394
Wildtype, miR-1-1 KO, miR-1 Double het P2 mixed strain heart analysis (MoGene 2.0 ST Arrays).
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Neonatal hearts (P2) from wildtype, miR-1-1 null and miR-1-2 +/-: miR-1-1 +/- double heterozygote animals were isolated and total RNA was extracted with TRIzol (Invitrogen), following the manufacturers suggested protocol.

Publication Title

microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact