refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 152 results
Sort by

Filters

Technology

Platform

accession-icon GSE119717
Genome-wide expression profiling of the perivascular adipose tissue in abdominal aortic aneurysm
  • organism-icon Homo sapiens
  • sample-icon 119 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Perivascular adipose tissue (PVAT) is thought to play a role in vascular homeostasis and in the pathogenesis of diseases of large vessels, including abdominal aortic aneurysm (AAA). We tested the hypothesis that locally restricted transcriptional profiles characterize PVAT surrounding AAA. Using a genome-wide approach, we investigated the PVAT transcriptome of AAA in 30 patients with either large (55 mm) or small (<55 mm) aneurysm diameter. We performed a data adjustment step using the DaMiRseq R/Bioconductor package, to remove the effect of confounders as produced by high-throughput gene expression techniques. We compared PVAT of AAA with PVAT of not-dilated abdominal aorta of each patient to limit the effect of inter-individual variability, using the limma R/Bioconductor package. We found highly consistent differences in PVAT gene expression clearly distinguishing PVAT of AAA from PVAT of not-dilated aorta, which increased in number and magnitude with increasing AAA diameter. These changes did not systemically affect other abdominal adipose depots (omental or subcutaneous fat). We dissected putative mechanisms associated with PVAT involvement in AAA through a functional enrichment network analysis: both innate and adaptive immune-response genes along with genes related to cell-death pathways, metabolic processes of collagen, sphingolipids, aminoglycans and extracellular matrix degradation were strongly overrepresented in PVAT of AAA compared with PVAT of not-dilated aorta. Our results provide support to a possible role of PVAT in AAA pathogenesis and suggest that AAA is an immunologic disease with an underlying autoimmune component. These disease-specific expression signatures could help identifying pharmacological targets for preventing AAA progression.

Publication Title

Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE83297
Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Aminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression. ECV304 endothelial cells were stimulated with IL-1 100 U/ml in the presence or absence of Aminaphtone 6 g/ml. Gene expression profiles were compared at 1, 3, and 6 h after stimulation by microarray.

Publication Title

Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17602
Identification of regions and genes important in Szary syndrome pathogenesis using genomic and expression microarrays
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE17601
Affymetrix Gene Expression array data for Szary Syndrome (SS) samples
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This study used tumour and paired normal samples from 28 Szary Syndrome (SS) patients to define recurrent regions of chromosomal aberrations. Our data identified recurrent losses of 17p13.2-p11.2 and 10p12.1-q26.3 occurring in 71 and 68% of cases respectively; common gains were detected for 17p11.2-q25.3 (64%) and chromosome 8/8q (50%). Moreover, we identified novel genomic lesions recurring in more than 30% of tumours: loss of 9q13-q21.33 and gain of 10p15.3-10p12.2. In the Szary Syndrome cases analysed, we could find several small and few large Uniparental Disomies involving interstitial or telomeric regions of LOH occurring mainly for chromosome 10 and to a lesser extent for chromosome 9 and 17. In the attempt to correlate Copy Number data and clinical parameters we find a relationship between complex pattern of chromosomal aberrations, involving at least three recurrent Copy Number alterations, and shorter survival. Integrating mapping and transcriptional data we were able to identify a total of 113 deregulated transcripts in aberrant chromosomal regions that included cancer related genes such as members of the NF-kB pathway (BAG4, BTRC, NKIRAS2, PSMD3, TRAF2) that might explain its constitutive activation in CTCL. Matching this list of genes with those discriminating patients with different survival times we identify several common candidates that might exert critical roles in Szary Syndrome, like BUB3 and PIP5K1B.

Publication Title

Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE118345
Affymetrix Gene Expression array data for Tcl1 mouse model samples
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Tcl1 is known to be involved in survival, proliferation and differentiation of human lymphocytes and mouse embryonic stem cells. Loss of Tcl1 gene in the KO mouse model affects skin integrity inducing alopecia and ulcerations.

Publication Title

T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33803
Environmental and simulation facility conditions can modulate gravity response of Drosophila transcriptome
  • organism-icon Drosophila melanogaster
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE33779
Environmental and facility conditions promote singular gravity responses of transcriptome during Drosophila metamorphosis
  • organism-icon Drosophila melanogaster
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Genome-wide transcriptional profiling showed that reducing gravity levels in the International Space Station (ISS) causes important alterations in Drosophila gene expression intimately linked to imposed spaceflight-related environmental constrains during Drosophila metamorphosis. However, simulation experiments on ground testing space-related environmental constraints, show differential responses. Curiously, although particular genes are not common in the different experiments, the same GO groups including a large multigene family related with behavior, stress response and organogenesis are over represented in them. A global and integrative analysis using the gene expression dynamics inspector (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices

Publication Title

Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51001
PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line

View Samples
accession-icon GSE50999
Gene expression data of diagnostic childhood T-ALL samples
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE51000
Gene expression signature of primary T-ALL cells treated with the PI3K inhibitor AS605240
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. In this study, we identified Myc as an important downstream integrator of PI3K pathway activity in T-ALL and we provide data supportive of an association of higher PI3K activity with glucocorticoid resistance and worse clinical outcome. The PI3K inhibitor AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy.

Publication Title

PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact