refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 250 results
Sort by

Filters

Technology

Platform

accession-icon GSE102976
Lenalidomide-mediated erythroid improvement in non-del(5q) myelodysplastic syndromes is associated with bone marrow immuno-remodeling [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

In the field of MDS and on bone marrow mononuclear cells , we search for a signature which predict the response to Lenalidomide treatment.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE46151
Six homeoproteins and a linc-RNA cooperate at the fast MYH locus to lock terminal fast myofibre phenotype
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thousands of long intergenic noncoding RNAs (lincRNAs) are encoded by the mammalian genome, which were reported to have multiple biological functions as transcriptional activators acting in cis 1 or trans 2, transcriptional repressors 3,4 or miRNAs decoys 5,6. However, the function of most lincRNAs has not yet been identified in vivo. Here, we demonstrate a role for linc-MYH, a novel long intergenic noncoding RNA, in adult fast-type myofibre specialization. Skeletal myofibre fast and slow phenotypes are established through differential expression of numerous fibre-specific genes7. We show linc-MYH and the fast MYH genes share a common enhancer located in the fast MYH genes locus and regulated by the Six1 homeoproteins. Muscle-specific Six1 mutant mice show increased expression of slow-type genes, and downregulation of linc-MYH and fast-type genes. linc-MYH function revealed by in vivo knockdown and wide transcriptomic analysis, is in fine to prevent expression of genes ensuring slow muscle contractile properties, and to increase fast-type muscle gene expression in fast-type myofibres. Thus, formation of efficient fast sarcomeric units and appropriate Ca++ cycling and excitation/contraction/relaxation coupling in fast- myofibres is achieved through the coordiante control of fast MYHs and linc-MYH expression by a Six bound enhancer.

Publication Title

Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE57898
Transcriptomic analysis of APC knockdown in proliferating primary myoblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

APC is a key regulator of canonical Wnt signalling since it participates to beta-catenin targeting to proteasomal degradation when the pathway is inactive. Moreover, independently of Wnt signaling, APC regulates several cellular functions such as mycrotubule dynamics, chromosome segregation, cell adhesion. Although APC has been widely studied for its implication in initation and progression of several cancers, its role in satellite cells (skeletal muscle stem cells) has never been investigated.

Publication Title

APC is required for muscle stem cell proliferation and skeletal muscle tissue repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72496
Expression data from primary myoblasts with active Beta-catenin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Regeneration of the adult skeletal muscle tissue relies on a population of muscle stem cells called satellite cells. During tissue repair, satellite cells exhibit active canonical Wnt/beta-catenin signaling.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50023
Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Six homeoproteins regulate fast MYH expression and calcium homeostasis

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-1849
Transcription profiling of skeletal muscle from wild type and Six1/ Six4 knock out mice at E10.5 to identify genes under the control of the Six proteins
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The aim of the experiment was to compare the transcriptome of Six1-/-Six4-/- and control embryos in order to identify genes under the control of Six proteins at E10.5.<br></br><br></br>E10.5 embryos were eviscerated, head and limbs were discarded, the neural tube was removed, and RNAs were prepared with the remaining axial tissues. <br></br><br></br>E10.5 RNAs from three SixdKO and two control embryos were hybridized on Affymetrix mouse genome 430A2.0 arrays (Affymetrix, Strasbourg - France).

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-1848
Transcription profiling of mouse back muscle from Six1-/-Six4-/- and control embryos in order to identify genes under the control of Six proteins at E18.5. E18.5
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The aim of the experiment was to compare the transcriptome of Six1-/-Six4-/- and control embryos in order to identify genes under the control of Six proteins at E18.5. E18.5 RNAs from back muscles of three SixdKO and two control embryos were hybridized on Affymetrix mouse genome 430A2.0 arrays (Affymetrix, Strasbourg - France).

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE84016
Expression data from Rspo1-null differentiating primary myoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Regeneration of the adult skeletal muscle tissue relies on a population of muscle stem cells called satellite cells. During tisse repair, satellite cells exhibit active canonical Wnt/beta-catenin signaling. Rspo1 is a modulator of Wnt signaling in many tissue, and is expressed by muscle progenitor cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE96697
Expression data from cells sorted from human fetal pancreas
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Although a large set of data is available concerning organogenesis in animal models, information remains scarce on human organogenesis. In this work, we performed temporal mapping of human fetal pancreatic organogenesis using cell surface markers. We demonstrate that in the human fetal pancreas at 7 weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate either into the acinar, ductal and endocrine lineages. Development towards the acinar lineage is paralleled by a substantial increase in GP2 expression. Conversely, a subset of the multipotent GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, an early marker of endocrine differentiation. Endocrine maturation will progress by up-regulating SUSD2 and lowering ECAD levels. Finally, we show that in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work constitutes a powerful approach to more precisely define intermediate cell population during conversion of multipotent progenitors into the 3 main human pancreatic cell types (acinar, ductal and endocrine) in vivo. As such, the data pave the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.

Publication Title

Reconstructing human pancreatic differentiation by mapping specific cell populations during development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98501
Glucose upregulates a limited number of genes in human beta cells.
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Although a large set of data is available concerning organogenesis in animal models, information remains scarce on human organogenesis. In this work, we performed temporal mapping of human fetal pancreatic organogenesis using cell surface markers. We demonstrate that in the human fetal pancreas at 7 weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate either into the acinar, ductal and endocrine lineages. Development towards the acinar lineage is paralleled by a substantial increase in GP2 expression. Conversely, a subset of the multipotent GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, an early marker of endocrine differentiation. Endocrine maturation will progress by up-regulating SUSD2 and lowering ECAD levels. Finally, we show that in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work constitutes a powerful approach to more precisely define intermediate cell population during conversion of multipotent progenitors into the 3 main human pancreatic cell types (acinar, ductal and endocrine) in vivo. As such, the data pave the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact