refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 30 results
Sort by

Filters

Technology

Platform

accession-icon GSE15207
Genome wide mapping of the haematopoietic system transcriptome
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Recent advances in high density oligonucleotides microarray technology have brought solutions for molecular profiling of human samples at an unprecedented resolution. We mapped whole blood RNA from healthy volunteers and CD34+ from cytapheresis to Human Exon ST 1.0 microarrays. We compared mature blood cells samples with immature CD34+ samples and each of these compartiement with a broad panel of solid tissues. By scanning the expression of over one million known or predicted exons, transcripts such as INPP4B, NEDD9 CD74 and VAV3 were identified as alternatively transcribed between haematopoietic system and solid tissues. The very large combinatorial complexity conveyed by alternative splicing contributes to the specific functional properties of blood cells and haematopoietic stem cells. The gene expression profiles are freely accessible through a dynamic web atlas, providing to the medical and scientific community a simple mean to interrogate and visualize this reference dataset. Finally, the relevance and the precision provided by this exon expression map suggest that exon arrays may be a powerful tool to link specific peripheral whole blood exon signatures modifications to many diseases such as cancer or auto-immune disorders.

Publication Title

Expression map of the human exome in CD34+ cells and blood cells: increased alternative splicing in cell motility and immune response genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10480
Hematopietic system high resolution transcriptome
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Recent advances in high density oligonucleotides microarray technology have generated solutions for molecular profiling of human samples at an unprecedented resolution. We mapped whole blood RNA from healthy volunteers and CD34+ collected by cytapheresis from patients to Exon ST 1.0 microarray probing for most known and predicted human exons. Comparison with a broad panel of solid tissues showed that blood displayed the largest tissue specific signature. This unique expression profile comprised transcripts from every blood cell compartment. Moreover, by scanning the expression of over one million different exons, several transcripts were identified as alternatively transcribed between whole blood and solid tissues, or CD34+ and other tissues. The precision of this expression map, at the exon resolution, and the coverage of every blood cell type and hematopoietic stem cells suggest that it will be possible to link specific whole blood exon signatures to many diseases such as cancer or auto-immune disorders and to discover alternative splicing events specific of mature blood cells or stem cells compartment.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31906
Genome wide gene expression profiles of distal colon from 5% DSS-treated mice after administration of various siRNA against TNFa.
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Differential gene expression assessed in siTNF-OMe-P treated animals showed significant correlation between improved colon integrity and clinical parameters of colitis with reduced TLR activation, tissue regeneration and reduced pro-inflammatory cytokines, as compared to all treatment groups.

Publication Title

Functionally enhanced siRNA targeting TNFα attenuates DSS-induced colitis and TLR-mediated immunostimulation in mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE24917
Genome wide gene expression profiles of Drosophila l(3)mbt larval brains and cultured tumors
  • organism-icon Drosophila melanogaster
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Mutants in the Drosophila gene lethal (3) malignant brain tumor cause malignant growth in the larval brain. This data shows the changes in gene expression profile associated to mutations in l(3)mbt, both in situ in third instar larval brains and in tumors cultured for 1 5 and 10 (T1, T5, T10) rounds of allograft culture

Publication Title

Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56897
The transcription factor GATA6 allows self-renewal of colon adenoma stem cells by repressing BMP gene expression
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE27081
Drosophila dKDM5/LID regulates H3K4me3 dynamics at the transcription start site of actively transcribed developmental genes
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93637
TP53INP2 knockdown in 3T3-L1 preadipocytes
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Excessive fat accumulation is a major risk factor for the development of type 2 diabetes.To determine the mechanisms by wich TP53INP2 regulates adipogenesis, gene expression profile was performed in TP53INP2-deficient 3T3-L1 cells at different stages of differentiation.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE51238
16q22-24 DNA amplification specifically predicts and mediates, through MAF gene, breast cancer bone metastasis.
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE49104
dDsk2 stabilizes dHP1c binding at TSS
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

dDsk2 regulates H2Bub1 and RNA polymerase II pausing at dHP1c complex target genes.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE113680
Gene expression signatures during differentiation of mouse hippocampal neurons in primary culture
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To investigate the possible roles on mitotic/microtubule-related genes during hippocampal neuron differentiation, we dissected E18.5 mouse embryonic hippocampi, cultured neurons in vitro and collected total RNA samples from different timepoints of differentiation.

Publication Title

No associated publication

Sample Metadata Fields

Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact