refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon GSE64328
Transcriptional Regulationand Chromatin Dynamics inHuman Epithelial Cell Differentiation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE64299
Transcriptional Regulationand Chromatin Dynamics inHuman Epithelial Cell Differentiation (expression)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Gene expression profiling of progenitor and differentiated keratinocytes by Affymetrix microarray

Publication Title

Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47032
Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell Renal Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

In this study we performed a genome wide analysis of the entire complement of mRNAs in clear cell renal cell carcinomas (ccRCC) by means of the Affymetrix Exon Array platform. The analyses were performed both at gene and exon level.

Publication Title

Genome-wide analysis of differentially expressed genes and splicing isoforms in clear cell renal cell carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE30028
Expression data from control and Pbx1-null CMPs and GMPs
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The capacity of the hematopoietic system to promptly respond to peripheral demands relies on adequate pools of progenitors able to transiently proliferate and differentiate in a regulated manner. However, little is known about factors that may restrain progenitor maturation to maintain their reservoirs. In addition to a profound defect in hematopoietic stem cell (HSC) self-renewal, conditional knockout mice for the Pbx1 proto-oncogene have a significant reduction in lineage-restricted progenitors, including common myeloid progenitors (CMPs) and, to a lesser extent, granulocyte-monocyte progenitors (GMPs).

Publication Title

Pbx1 restrains myeloid maturation while preserving lymphoid potential in hematopoietic progenitors.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9198
Long-term hematopoietic stem cells and the proto-oncogene Pbx1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9188
Differentially regulated genes in LT-HSC from control or Pbx1-null mice
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Self-renewal is a defining characteristic of stem cells, however the molecular pathways underlying its regulation are poorly understood. Here we demonstrate that conditional inactivation of the Pbx1 proto-oncogene in the hematopoietic compartment results in a progressive loss of long-term hematopoietic stem cells (LT-HSCs) that is associated with concomitant reduction in their quiescence, leading to a defect in the maintenance of self-renewal as assessed by serial transplantation. Transcriptional profiling revealed that multiple stem cell maintenance factors are perturbed in Pbx1-deficient LT-HSCs, which prematurely express a large subset of genes, including cell cycle regulators, normally expressed in non-self-renewing multipotent progenitors. A significant proportion of Pbx1-dependent genes are associated with the Tgf-b pathway, which serves a major role in maintaining HSC quiescence. Pbx1-deficient LT-HSCs are unable to up-regulate the cyclin dependent kinase inhibitor p57 in response to Tgf-b, providing a mechanism through which Pbx1 maintenance of stem cell self-renewal is achieved.

Publication Title

Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE9189
Differentially regulated genes in normal LT-HSC vs ST-HSC
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Self-renewal is a defining characteristic of stem cells, however the molecular pathways underlying its regulation are poorly understood. Here we demonstrate that conditional inactivation of the Pbx1 proto-oncogene in the hematopoietic compartment results in a progressive loss of long-term hematopoietic stem cells (LT-HSCs) that is associated with concomitant reduction in their quiescence, leading to a defect in the maintenance of self-renewal as assessed by serial transplantation. Transcriptional profiling revealed that multiple stem cell maintenance factors are perturbed in Pbx1-deficient LT-HSCs, which prematurely express a large subset of genes, including cell cycle regulators, normally expressed in non-self-renewing multipotent progenitors.

Publication Title

Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE45225
Gene expression of cultured HUVECs submitted to different shear stress in the presence or absence of stent procedure
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Many studies have characterized the results of shear stress changes on cultured endothelial cells in different bioreactor systems. However it is still unclear how an invasive intervention like stent procedure may influence the transcriptional response of endothelium.

Publication Title

Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs) model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25039
Transcriptional response to serum stimulation of Rat1 fibroblasts in the presence or absence of the Myc interfering molecule termed Omomyc.
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Myc is a multifaceted bHLHZip transcription factor deregulated in the majority of human cancers. How to target Myc for cancer therapy is unclear, given its involvement in a variety of key functions in healthy cells. We used microarrays to capture the cellular transcriptional response to Omomyc a Myc interfering molecule acting at the level of protein protein interactions that demonstrated a remarkable therapeutic efficacy in transgenic mouse cancer models.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE100933
SCD Stem Cell Differentiation on board the International Space Station: the problem of human bone loss
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact