refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16063 results
Sort by

Filters

Technology

Platform

accession-icon GSE13712
Differential gene expression of young and senescent HUVECs under static and laminar shear stress conditions
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Laminar shear stress due to constant blood flow is known to play a critical role in maintaining vascular health. In contrast, endothelial cell senescence appears to be closely associated with the incidence of vascular disorder. In an attempt to identify functional biomarkers for age-related vascular health/disease, the present study investigated differential gene expression of young and senescent human umbilical vein endothelial cells (HUVECs) under static and laminar shear stress.

Publication Title

Differential gene expression in young and senescent endothelial cells under static and laminar shear stress conditions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27449
Changes of mRNA expressin in rat kidney inner medulla in response to dDAVP stimulation/ withdrawal
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The E3 ubiquitin -protein ligases (E3s) plays a role as regulators of protein trafficking and degradation. We aimed to identify E3s in rat kidney which are associated with dDAVP-induced urine concentration.

Publication Title

E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39549
Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity
  • organism-icon Mus musculus
  • sample-icon 91 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Time-course analysis of adipocyte gene expression profiles response to high fat diet. The hypothesis tested in the present study was that in diet-induced obesity, early activation of TLR-mediated inflammatory signaling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches targeting visceral adipose tissue genes altered early by HFD feeding may help ameliorate the deleterious effects of a diet-induced obesity.

Publication Title

Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity.

Sample Metadata Fields

Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE40481
Time-dependent network analysis reveals molecular targets underying the development of diet-induced obesity and non-alcoholic steatohepatitis.
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Core diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time-course microarray analysis (8 time-points over 24 weeks) of high-fat diet fed mice compared to normal diet fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. When we merged core diet-induced obesity networks, Tlr2, Cd14 and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further protein-protein interaction network analysis revealed Tlr2, Cd14 and Ccnd1 were inter-related through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14 and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH.

Publication Title

Time-dependent network analysis reveals molecular targets underlying the development of diet-induced obesity and non-alcoholic steatohepatitis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE157822
An animal study for evaluating the dose-dependent effects of fermented mixed grain enzyme food for adiposity and its metabolic disorders in high-fat-diet induced obese mice
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

From a long time ago, supplementation of fermented enzyme foods could have worked health effects on the body in the east nevertheless, only a few studies reported functions of them such as weight loss and metabolic syndrome. Thus, it is necessary to be verified whether supplementation of fermented enzyme foods can act in the body as a functional material. Therefore, we investigated the anti-obesity effects of fermented mixed grain with digestive enzymes (FMG) in high-fat diet induced mice. Sixty C57BL/6J mice were divided into six dietary groups and fed a normal diet (ND), a high-fat diet (HFD), Bacilus Coagulans group, steamed grain group, low-dose fermented mixed grain group(L-FMG), high-dose fermented mixed grain group (H-FMG) supplement for 12 weeks. After sacrificing, body weight and body fat mass in H-FMG group were significantly decreased compared to HFD group with a simultaneous decrease in plasma lipids. Also, H-FMG significantly decreased the blood glucose and improved the glucose tolerance compared to HFD group. Moreover high-dose FMG supplementation dramatically decreased the levels of inflammatory cytokines which secreted from adipocyte. Taken together, our findings suggest that H-FMG ameliorate high fat-diet induced obesity and its complication and could be used as a potential preventive agent for obesity.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE54189
Luteolin attenuates lipid dysregulation and insulin resistance thorough interplay of liver and adipose tissue in diet-induced obese mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of effect of luteolin on lipid metabolism at gene expression level. The hypothesis tested in the present study was that luteolin treatment with obesogenic diet suppressed the hepatic lipogenesis pathways. Conversely, in adipose tissue, luteolin stimulated the lipogenesis pathway and it also simultaneously increased the expression of genes controlling lipolysis and TCA cycle. Results provide important information about the effect on diet-induced obesity and its metabolic complications.

Publication Title

Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE117991
Expression data from sulfisoxazole-treated cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Sulfisoxazole, a FDA-approved drug, is a promising repositioned drug candidate for the treatement of various cancers. Therefore we analyzed the gene expression by microarray to identified the up-regulated and down-regulated genes after SFX treatment in both, melanoma and breast cancer cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE35598
Osmolality as a major regulator of the transcriptome and metabolome in kidney collecting duct cells
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

We hypothesized that altered extracellular osmolality per se could affect the transcriptome of the kidney inner medullary collecting duct (IMCD) cells, and hence it might change renal tubular function. The data sets of transcriptomics were incorporated into the "omic" data sets of metabolomics. Primary cultured IMCD cells of rat kidney were grown in hyperosmolar culture medium (640 mOsm/KgH2O) for 4 d, and then the cells were cultured in the medium with either reduced (300 mOsm/KgH2O) or the same osmolality for 1 or 2 d more.

Publication Title

Patterns of gene and metabolite define the effects of extracellular osmolality on kidney collecting duct.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE63198
High-fat diet decreases expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in adipose tissue, along with increased expression of extracellular matrix remodeling- and inflammation-related genes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We identified differentially expressed genes in epididymal white adipose tissue of high fat diet(HFD)-fed mice compared to low fat diet-fed mice using microarray analysis. Microarray analysis revealed that genes related to lipolysis, fatty acid metabolism, mitochondrial energy transduction, oxidation-reduction, insulin sensitivity, and skeletal system development were downregulated in HFD-fed mice, and genes associated with extracellular matrix (ECM) components, ECM remodeling, and inflammation were upregulated. The top 10 up- or downregulated genes include Acsm3, mt-Nd6, Fam13a, Cyp2e1, Rgs1, and Gpnmb, whose roles in obesity-associated adipose tissue deterioration are poorly understood.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE87864
Differential gene expression data from MCF7 and MCF7_ADR
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

To identify differentially up or downregulated genes in MCF7_ADR cell compare to MCF7, we have employed whole genome microarray expression profiling.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact