refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 9777 results
Sort by

Filters

Technology

Platform

accession-icon SRP131220
Transcriptome of organotropic metastatic cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Characterization of organ-targeting metastatic cancer cells

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon SRP111915
Homo sapiens Raw sequence reads
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The human MDA MB 231 breast cancer and MDA MB 435 melanoma cell lines were selected for isolates able to pass through narrow 3 micron pores in Transwell tissue culture inserts. In addition, MDA MB 231 breast cancer cells were selected for a population of small sized cells in parallel by flow cytometric sorting. RNA sequencing of the three populations (parental, selected, flow sorted) of MDA MB 231 breast cancer cells, and two populations (parental, selected) of MDA MB 435 melanoma cells, was performed.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Cell line, Race

View Samples
accession-icon SRP081135
Mus musculus Raw sequence reads
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Pancreatic cancer patient survival is the lowest of all common cancers. Given that pancreatic cancer therapies do little to improve survival, there is a significant need to identify additional potential therapeutic targets and treatment strategies. The ROCK1 locus on chromosome 18 is amplified in 15% of pancreatic patient tumors (Biankin et al. 2012), accompanied by concordant copy number/gene expression changes (Bailey et al. 2016). The ROCK1 and ROCK2 kinases promote actomyosin contractility through phosphorylation of substrates including the myosin regulatory light chain 2 (MLC2), myosin-binding subunit of the MLC phosphatase (MYPT1) and LIM kinases 1&2 (Rath and Olson 2012, Julian and Olson 2014). In addition to direct effects on the organization and dynamics of the actin cytoskeleton that impact cell morphology, ROCK-mediated cell contractility also affects gene transcription (Sanz-Moreno et al. 2011). How ROCK-mediated actomyosin contractility might contribute to pancreatic cancer by altering gene expression has not been established.In this study, mouse pancreatic ductal adenocarcinoma tumour cells were transduced with retrovirus encoding conditionally-activated estrogen-receptor hormone-binding domain (hbER) fusions with ROCK1 (ROCK1:ER) or ROCK2 (ROCK2:ER) kinase domains, or green fluorescent protein (GFP:ER). GFP:ER expressing cells were treated with ethanol vehicle or 1 micromolar 4-hydroxytamoxifen (4HT) to identify any effects of the estrogen analogue, while ROCK1:ER and ROCK2:ER cells were treated with 1 micromolar 4HT to activate the ER fusion proteins. RNA was isolated, and enriched for poly A+ transcripts prior to sequencing.Bailey, P., et al. (2016). Nature 531: 47-52.Biankin, A. V., et al. (2012). Nature 491: 399-405.Julian, L. and M. F. Olson (2014). Small GTPases 5: e29846.Rath, N. and M. F. Olson (2012). EMBO Rep 13: 900-908.Sanz-Moreno, V., et al. (2011). Cancer Cell 20: 229-245.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP167225
Characterization of Transcriptomic Profile in Early Zebrafish PGCs by Single Cell Sequencing
  • organism-icon Danio rerio
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single cell RNA-seq was applied for studying the transcriptomic profile in early zebrafish PGCs(primordial germ cells) by choosing three time points during zebrafish embryonic development. The three time points were 6hpf(hours post fertilization, also called shield stage), 11hpf(also called 3-somite stage) and 24hpf(also called prim-5 stage).

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP181265
A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Temozolomide (TMZ) is a frequently used chemotherapy for glioma; however, chemoresistance is a major problem limiting its effectiveness. Thus knowledge of mechanisms underlying this outcome could improve patient prognosis. Here, we report that deletion of a regulatory element in the HOTAIR locus increases glioma cell sensitivity to TMZ and alters transcription of multiple genes. Analysis of a combination of RNA-seq, Capture HiC and patient survival data suggests that CALCOCO1 and ZC3H10 are target genes repressed by the HOTAIR regulatory element and that both function in regulating glioma cell sensitivity to TMZ. Rescue experiments and TAD analysis based on HiC data confirmed this hypothesis. We propose a new regulatory mechanism governing glioma cell TMZ sensitivity.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19820
Expression data from rat pluripotent stem (PS) cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Various pluripotent stem (PS) cells can be isolated from early developing embryos in mouse. Among these, two kinds of PS cells were isolated from mouse blastocysts: conventional embryonic stem (ES) cells with domed morphology that are maintained with LIF and BMP for self-renewal, and FAB-ES cells with flat morphology that need bFGF, activinA and BIO for self-renewal. Here, we report a novel PS cell line from rat blastocysts, which is distinguishable from conventional ES cells but is morphologically similar to mouse epiblast stem cell (EpiSC) lines. We used microarrays to detail the global program of gene expression of rES and rPS.

Publication Title

The heterogeneity and dynamic equilibrium of rat embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP072829
Transcriptome analysis of CNS leukemia
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The goal of this study is to reveal the characters and therapeutic targets of CNS leukemia.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP045672
RNA-seq transcriptome analysis of mouse cell lines
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Building the gene expression profiles and identifying the differentially expressed genes in specific comparisons.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13330
Senescent Stromal-Derived Osteopontin Promotes Preneoplastic Cell Growth
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Alterations in the tissue microenvironment collaborate with cell autonomous genetic changes to contribute to neoplastic progression. The importance of the microenvironment in neoplastic progression is underscored by studies demonstrating that fibroblasts isolated from a tumor stimulate the growth of preneoplastic and neoplastic cells in xenograft models. Similarly, senescent fibroblasts promote preneoplastic cell growth in vitro and in vivo. Because senescent cells accumulate with age, their presence is hypothesized to facilitate preneoplastic cell growth and tumor formation in older individuals. To identify senescent stromal factors directly responsible for stimulating preneoplastic cell growth, we carried out whole genome transcriptional profiling and compared senescent fibroblasts to their younger counterparts. We identified osteopontin (OPN) as one of the most highly elevated transcripts in senescent fibroblasts. Importantly, reduction of OPN protein levels by RNAi did not impact senescence induction in fibroblasts; however, it dramatically reduced the growth-promoting activities of senescent fibroblasts in vitro and in vivo, demonstrating that OPN is necessary for paracrine stimulation of preneoplastic cell growth. In addition, we found that recombinant OPN was sufficient to stimulate preneoplastic cell growth. Finally, we demonstrate that OPN is expressed in senescent stroma within preneoplastic lesions that arise following DMBA/TPA treatment of mice, suggesting that stromal-derived OPN-mediated signaling events impact neoplastic progression.

Publication Title

Senescent stromal-derived osteopontin promotes preneoplastic cell growth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP073907
Saccharomyces cerevisiae / Budding yeast Transcriptome in CDK1-Cyclin-depleted states
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We studied gene expression by RNA-seq in yeast cells in various CDK1-cyclin-depleted states.

Publication Title

The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription.

Sample Metadata Fields

Disease, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact