refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2275 results
Sort by

Filters

Technology

Platform

accession-icon GSE2507
Cardiac and skeletal muscle gene expression profiles in dysferlin deficient mice
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Dysferlin is expressed in skeletal and cardiac muscle. However, dysferlin deficiency, namely limb girdle muscular dystrophy 2B (LGMD2B) and Myoshi myopathy, results in skeletal muscle weakness and spares the heart. This dichotomy could be caused by differential regulation of protective mechanisms. Therefore, we compared intraindividual mRNA expression profiles between cardiac and skeletal muscle in dysferlin-deficient SJL/J mice and normal C57BL/6 mice.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54726
Repeat elements study in pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE54725
Repeat elements study in pluripotent stem cells [expression array]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We surveyed RNA-Seq data to identify those TEs that are transcriptionally active uniquely in human pluripotent cells. We identified one endogenous retrovirus (HERV-H) family, uniquely found in primates as being unusually abundant in the transcriptome. The microarray data provided is to support our human naive cell hypothesis.

Publication Title

Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE35899
Expression data from Mammospheres
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The combined activation of Wnt/-catenin and MET/HGF is required for mammary cancer stem cell (MaCSC) maintenance. We generated mammospheres derived from tumors of mice harboring Wnt/Met signaling mutations on which we performed microarray analysis to evaluate gene expression signatures controlled by Wnt and MET pathways. We used the gene expression profiles to dissect the role and the functions of these pathways in MaCSCs.

Publication Title

Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE17765
DNA hypomethylation leads to derepression of myeloerythroid genes in hematopoietic stem cells (HSC)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of hematopoietic stem cells (HSC, LSK Flt3-) and myeloid progenitors (MP, LK CD34+) sorted from wildtype and Dnmt1 hypomorph mice

Publication Title

DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE110986
GATA2 in mesenchymal stem cells controls bone trabecularization and hematopoiesis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Loss of the Hematopoietic Stem Cell Factor GATA2 in the Osteogenic Lineage Impairs Trabecularization and Mechanical Strength of Bone.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE19778
The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The endocytic receptor megalin constitutes the main pathway for clearance of plasma proteins from the glomerular filtrate in the proximal tubules. However, little is know about the mechanisms that control receptor activity. A widely discussed hypothesis states that the intracellular domain (ICD) of megalin, released upon ligand binding, acts as a transcription regulator to suppress receptor expression - a mechanism proposed to safeguard the proximal tubules from protein overload. Here, we have put this hypothesis to the test by generating a mouse model co-expressing the soluble ICD and the full-length receptor. Despite pronounced expression in the proximal tubules, the ICD failed to exert any effects on renal proximal tubular function such as megalin expression, protein retrieval, or renal gene transcription. Thus, our data argue that the ICD does not play a role in regulation of megalin activity in vivo in the proximal tubules.

Publication Title

The soluble intracellular domain of megalin does not affect renal proximal tubular function in vivo.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE110985
Expression data from primary sqWAT-MSC cells from mouse
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

GATA2 is a transcription factor that is required for hematopoietic stem cell (HSC) differentiation. GATA2 is also expressed in mesenchymal cells and blocks differentiation of both white and brown adipocytes by interfering with C/EBP activity and PPAR expression. By studying genome-wide binding sites of endogenous GATA2 in mesenchymal stem cells (MSC), we discovered a previously unrecognized function of GATA2 in the regulation of skeletal development-related genes. In contrast to hematopoietic stem cells, canonical GATA2 binding motifs in MSCs co-localized with motifs for transcription factors of the FOX and HOX family, known regulators of skeletal development. Consistently, ectopic GATA2 expression in MSCs regulated many osteoblast-related genes. Ectopic GATA2 blocked, whereas GATA2 deletion enhanced differentiation of osteoblastic precursors. GATA2 expression inhibited bone morphogenetic protein (BMP)-2 induced SMAD1/5/8 activity, a pathway that drives osteoblastogenesis. MSC-specific deletion of GATA2 in mice affected both numbers and osteogenic potential of bone-residing precursors without disturbing normal skeletal development. In adult mice, MSC-specific GATA2 deficiency affected trabecular bone structure and its mechanical properties. blood phenotype? In summary, our study identified GATA2 as a novel regulator of osteoblast differentiation and bone morphology, suggesting a role of GATA2 in MSC lineage determination that goes beyond adipocyte differentiation.

Publication Title

Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33420
microRNA-143 downregulates Hexokinase 2 in colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in tumorigenesis. miR-143 is reported to be down-regulated in several cancers, but knowledge of its targets in colon cancer remains limited. To investigate the role of miR-143 in colon cancer, we have employed a microarray based approach to identify miR-143 targets. Based on seed site enrichment analyses and unbiased word analyses, we found a significant enrichment of miRNA binding sites in the 3-untranslated regions (UTRs) of transcripts down-regulated upon miRNA overexpression. Here we identify Hexokinase 2 (HK2) as a direct target of miR-143 and show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion, indicating that miR-143 down-regulation of HK2 affects glucose metabolism in colon cancer cells.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE27529
Inhibition of miR-9 regulates HuR and DICER1 and blocks Hodgkin Lymphoma tumor outgrowth
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An Hodgkin Lymphoma cell line have been treated with an LNA inhibitor for miR-9 or with a scramble LNA to identify miR-9 regulated pathways that could be important for Hodgkin Lymphoma pathogenesis.

Publication Title

Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact