refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1722 results
Sort by

Filters

Technology

Platform

accession-icon GSE4981
Gene copy number polymorphism, a major source of genetic variation between humans
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have performed a genome wide analysis of gene copy number polymorphisms and report here for the first time that the human genome contains thousands of well-characterized genes at copy numbers different from one maternal and one paternal allele; and that, furthermore, the copy numbers of hundreds of well-characterized genes can vary between two normal healthy humans making this a major source of genetic variation. Groups of genes affected by CNPs include genes involved in signal transduction, oncogenesis, cell adhesion activity and several types of immune response. In contrast to SNPs, which preferentially affect non-coding regions of the genome, copy number polymorphisms of well-characterized and actively expressed genes are very likely to have important biological consequences.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7364
Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We present a novel method of using commercial oligonucleotide expression microarrays for aCGH, enabling DNA copy number measurements and expression profiles to be combined using the same platform. This method yields aCGH data from genomic DNA without complexity reduction at a median resolution of approximately 17,500 base pairs. Due to the well-defined nature of oligonucleotide probes, DNA amplification and deletion can be defined at the level of individual genes and can easily be combined with gene expression data.

Publication Title

Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32140
The response of PBMCs and primary airway epithelial cells to Influenza and RSV virus
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE80145
Comparison of Wild type and Pofut1-deleted skeletal muscle
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Pofut1 is an essential gene that glycosylates proteins containing EGF-like repeats, including Notch Receptors (NotchRs). Work in mice and in Drosophila has shown that O-fucosylation by Pofut1 is required for NotchR ligands to bind to and activate NotchRs. As such, Pofut1 deletion in skeletal myofibers allows for an analysis of potential functions and molecular changes of Pofut1 in skeletal muscle that derive from its expression in skeletal myofibers. In this study we compared gene expression profiles between quadriceps muscles in mice where Protein O-fucosyltransferase 1 (Pofut1) was deleted specifically in skeletal myofibers via use of a human skeletal alpha actin Cre transgene (Scre) and a loxP flanked Pofut1 gene (SCreFF) and mice which bore the only the Scre transgene but did not have floxed Pofut1 alleles (SCre++).

Publication Title

Deletion of <i>Pofut1</i> in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in <i>cis</i> and in <i>trans</i>.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE97610
Role of loss of Pofut1 expression on self-renewal and differentiation of adult neural progenitor cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Reduced NotchR signaling has been implicated in the reduced division and differentiation of stem cells in a number of tissues. The Protein-O-fucosyltransferase 1 gene (Pofut1) encodes a glycosyltransferase that O-fucosylates EGF-repeat-containing proteins, including Notch Receptors (NotchRs), and absence of Pofut1 glycosylation on NotchRs inhibits ligand-induced NotchR signaling.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE31668
Inhibitory Role of Notch1 in Calcific Aortic Valve Disease
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Aortic valve calcification is the most common form of valvular heart disease, but the mechanisms of calcific aortic valve disease (CAVD) are unknown. NOTCH1 mutations are associated with aortic valve malformations and adult-onset calcification in families with inherited disease. The Notch signaling pathway is critical for multiple cell differentiation processes, but its role in the development of CAVD is not well understood. The aim of this study was to investigate the molecular changes that occur with inhibition of Notch signaling in the aortic valve. Notch signaling pathway members are expressed in adult aortic valve cusps, and examination of diseased human aortic valves revealed decreased expression of NOTCH1 in areas of calcium deposition. To identify downstream mediators of Notch1, we examined gene expression changes that occur with chemical inhibition of Notch signaling in rat aortic valve interstitial cells (AVICs).

Publication Title

Inhibitory role of Notch1 in calcific aortic valve disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27395
Analysis of Gsk-3-Deficient Embryonic Stem Cells Reveals Large-Scale Alterations in Gene Expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The two vertebrate Gsk-3 isoforms, Gsk-3a and Gsk-3b, are encoded by distinct genetic loci and exhibit mostly redundant function in murine embryonic stem cells (ESCs). Here we report that deletion of both Gsk-3a and Gsk-3b in mouse ESCs results in significant changes in gene expression. In contrast, deletion of either Gsk-3a or Gsk-3b individually had little effect on gene expression. These data support the notion that Gsk-3 isoforms are functionally redundant in embryonic stem cells. In addition, we did not find the expected upregulation of known Wnt target genes. Our data suggests that Gsk-3-meidated regulation of gene expression in embryonic stem cells is complex, and likely involves affects on numerous signaling pathways.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40491
Expression data from post natal mouse aortic heart valves treated with all-trans retinoic acid or a retinoic acid receptor antagonist (LE540) relative to DMSO treated controls
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Our lab has previously shown that treatment of murine heart valve explants with ATRA promotes calcification in vitro. In order to fully explore gene expression changes in the valve in response to ATRA or LE540, a high throughput microarray was performed.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20015
Phosphatidylinositol 3-Kinase (PI3K) Signaling via Glycogen Synthase Kinase-3 (Gsk-3) Regulates DNA Methylation of Imprinted Loci.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The two vertebrate Gsk-3 isoforms, Gsk-3a and Gsk-3b, are encoded by distinct genetic loci and exhibit mostly redundant function in murine embryonic stem cells (ESCs). Here we report that deletion of both Gsk-3a and Gsk-3b in mouse ESCs results in misregulated expression of imprinted genes and hypomethylation of corresponding imprinted loci. Treatment of wild-type ESCs with small molecule inhibitors of Gsk-3 phenocopies the DNA hypomethylation of imprinted loci observed in Gsk-3 null ESCs. We provide evidence that DNA hypomethylation in Gsk-3 null ESCs is due to a reduction in the levels of the de novo DNA methyltransferase, Dnmt3a2.

Publication Title

Phosphatidylinositol 3-kinase (PI3K) signaling via glycogen synthase kinase-3 (Gsk-3) regulates DNA methylation of imprinted loci.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5824
Identification of rapamycin as a glucocorticoid resistance reversal agent
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Drug resistance remains a major obstacle to successful cancer treatment. Here we use a novel approach to identify rapamycin as a glucocorticoid resistance reversal agent. A database of drug-associated gene expression profiles was screened for molecules whose profile overlapped with a gene expression signature of glucocorticoid (GC) sensitivity/resistance in Acute Lymphoblastic Leukemia (ALL) cells. The screen indicated the mTOR inhibitor rapamycin profile matched the signature of GC-sensitivity. We thus tested the hypothesis that rapamycin would induce GC sensitivity in lymphoid malignancy cells, and found that it sensitized cells to glucocorticoid induced apoptosis via modulation of antiapoptotic MCL1. These data indicate that MCL1 is an important regulator of GC-induced apoptosis, and that the combination of rapamycin and glucocorticoids has potential utility in ALL. Furthermore this approach represents a novel strategy for identification of promising combination therapies for cancer.

Publication Title

Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact