refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 4243 results
Sort by

Filters

Technology

Platform

accession-icon GSE35959
Effects of aging, primary osteoporosis, and cellular senescence on Human Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE35956
Effects of Primary Osteoporosis and Advanced Age on Human Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the present study we analyzed the effect of primary osteoporosis and advanced donor age on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC of elderly patients suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. Control cells were obtained from bone marrow of femoral heads of middle-aged, non-osteoporotic donors after total hip arthroplasty.

Publication Title

The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE35957
Effects of Cellular Senescence on Human Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the present study we analyzed the effect of cellular senescence on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC were isolated from femoral heads of non-osteoporotic donors after total hip arthroplasty.

Publication Title

The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE35958
Effects of Primary Osteoporosis on Human Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the present study we analyzed the effect of primary osteoporosis on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from human bone marrow. Human MSC of elderly patients suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. Bone marrow of age-matched, non-osteoporotic donors was obtained of femoral heads after total hip arthroplasty.

Publication Title

The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE35955
Effects of aging on Human Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the present study we analyzed the effect of advanced donor age on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC of elderly and middle-aged patients without symptoms of osteoporosis were isolated from femoral heads after total hip arthroplasty.

Publication Title

The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP158937
NICD2 overexpression in the bone marrow stromal cell line ST-2 cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Notch signaling critically controls cell fate decisions in mammals, both during embryogenesis and in adults. In the skeleton, Notch suppresses osteoblast differentiation and sustains bone marrow mesenchymal progenitors during postnatal life. Stabilizing mutations of Notch2 cause the Hajdu-Cheney syndrome characterized by early onset osteoporosis in humans, but the mechanism whereby Notch inhibits bone accretion is not fully understood.To gain further insights about the mechanism we performed RNA-seq experiments with the doxycycline-inducible NICD2-ST2 cells with or without doxycycline treatment for 24 hrs.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon SRP101761
RNA-seq identifies ß-estradiol treatment in U2OS osteosarcoma cell
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This study was to identify gene expression profile change associated withß-estradiol treatment in osteosarcoma cells by high-throughput RNA sequencing

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE37396
The histone methyltransferase MLL3 regulates genome-scale circadian transcription
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone methyltransferase MLL3 contributes to genome-scale circadian transcription.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE57008
Transcriptomics of murine ex vivo isolated alveolar type 2 epithelial cells from Influenza A respiratory infection
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Influenza A virus (IAV) infections periodically cause substantial morbidity and mortality in the human population. In the lung, the primary targets for IAV replication are type II alveolar epithelial cells (AECII), which are increasingly recognized for their immunological potential. However, our knowledge of the role of AECII in anti-IAV immunity is incomplete and their in vivo response to infection has not been evaluated. To increase our understanding of their role in host-response to IAV-infection, we analyzed transcriptional regulation in primary AECII isolated from infected mice. Results: Microarray analyses of AECII isolated on the first three days following IAV-infection revealed extensive transcriptional regulation. A multitude of differentially expressed transcripts was identified and in comparison to whole-lung tissue revealed a strong contribution of AECII to respiratory anti-IAV responses. Type I interferon played a major role in the detected gene expression profile and functional pathway analyses showed AECII to be highly active in pathogen recognition, cell recruitment and antigen-presentation. Analysis of Toll-like receptor 7 (TLR7) deficient mice indicated AECII to rely on the hosts expression of this innate IAV-sensor to elicit their full response. Importantly, the AECII transcriptional profiles correlated to cell recruitment and type I interferon levels detected in the lungs of infected animals. Conclusions: Ex vivo analysis of primary murine AECII proved as a powerful tool to increase our understanding of AECII biology in infection. Our analysis revealed an exceptionally strong contribution of AECII to local host defenses by integrating signals provided by surrounding cells and direct pathogen recognition.

Publication Title

Alveolar Type II Epithelial Cells Contribute to the Anti-Influenza A Virus Response in the Lung by Integrating Pathogen- and Microenvironment-Derived Signals.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE17302
IFN-mediated gene expression patterns
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact