refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3656 results
Sort by

Filters

Technology

Platform

accession-icon GSE93426
Global Gene Expression Profiles of Postnatal Myocardium
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The present study was to investigate the differentially expressed genes in 24-hour-old (containing proliferative cardiomyocytes), 7-day-old (containing the burst of proliferative cardiomyocytes), and 10-week-old (containing growth-arrested cardiomyocytes) C57BL/6 mouse hearts using global gene expression profiles.

Publication Title

Global gene expression analysis combined with a genomics approach for the identification of signal transduction networks involved in postnatal mouse myocardial proliferation and development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33417
Global analysis of mRNA decay in induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Expression data from human induced pluripotent stem cells(iPSCs) and Human foreskin fibroblasts (HFFs) with treatment actinomycin D

Publication Title

Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE35944
The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Almost all cellular mRNAs terminate in a 3 poly(A) tail, the removal of which can induce both translational silencing and mRNA decay. Mammalian cells encode many poly(A)-specific exoribonucleases but their individual roles are poorly understood. Here, we undertook an analysis of the role of PARN deadenylase in mouse myoblasts using global measurements of mRNA decay rates. Our results reveal that a discrete set of mRNAs exhibit altered mRNA decay as a result of PARN depletion and that stabilization is associated with increased poly(A) tail length and translation. We determined that stabilization of mRNAs does not generally result in their increased abundance supporting the idea that mRNA decay is coupled to transcription. Importantly, PARN knockdown has wide ranging effects on gene expression that specifically impact the extracellular matrix and cell migration. Finally, although PARN has its own unique target transcripts it also influences some genes whose expression is modulated by other deadenylases.

Publication Title

The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21236
Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE21233
Expression data from C2C12 mouse myoblast with treatment actinomycin D
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific. We have established the rates of decay for over 7000 transcripts expressed in mouse C2C12 myoblasts.

Publication Title

Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE7407
Regulation of Gene Expression by Sirt1 in the heart
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We harvested the heart from transgenic mice with cardiac specific overexpression of Sirt1 (Tg-Sirt1) and non-transgenic (NTg) control littermate at 3 months of age and then microarray analyses were conducted.

Publication Title

Sirt1 regulates aging and resistance to oxidative stress in the heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21235
mRNA immunoprecipitated with CUGBP1 in C2C12
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Dramatic changes in gene expression occur in response to extracellular stimuli and during differentiation. Although transcriptional effects are important, alterations in mRNA decay also play a major role in achieving rapid and massive changes in mRNA abundance. Moreover, just as transcription factor activity varies between different cell types, the factors influencing mRNA decay are also cell-type specific.GREs are recognized by CUGBP1, an RNA-binding protein and instability factor whose function is affected in several neuromuscular diseases. To dectect the mRNA associated with CUGBP1, we utilized RNA immunoprecipitation followed by microarray (RIP-Chip) to identify CUGBP1-associated transcripts.

Publication Title

Systematic analysis of cis-elements in unstable mRNAs demonstrates that CUGBP1 is a key regulator of mRNA decay in muscle cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86861
Global Gene Expression Analyses of Three BCC Subsets, Based on the Relative Level of Oct4A
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Despite education and aggressive treatment, breast cancer (BC) remains a clinical problem. BC cells (BCCs) can migrate early to metastatic sites where they may exist in cellular dormancy for decades. Presently, there are no consensus markers for cancer stem cells (CSCs) that are involved in tumor initiation and progression, and drug resistance. The current designation of CSCs might comprise similar tumor initiating cells, but at different developmental phase. In order to understand these differences, we developed a working hierarchy of BCCs. We initiated the studies in which three BCC subsets were selected based on the relative expressions of the stem cell-linked genes, Octamer4A (Oct4A). The sorted BCCs were subjected to array analyses using Affymetrix gene chip. Hierarchical clustering indicated distinct gene expression among the three subsets. Differential gene expressions of membrane proteins validated three novel genes, TMEM-98, GPR64 and FAT4. These three genes, in combination of known markers for CSCs, CD44, CD24, aldehyde dehydrogenase 1 (ALDH1) and Oct4A, were used to stratify BCCs led to a working hierarchy of BCCs. The validity of the hierarchical BCCs was applied to blood samples from patients, during relapse, and before and after treatment. These studies resulted in the patients grouped with distinct BCCs in the circulation. The relevance of the latter findings are discussed with regards to prediction of treatment response and time of BC relapse. The findings require a larger cohort of patients in a prospective multi-center study. The stratification could be important to understand treatment response, strategies for alternative approaches, and an understanding of the interaction between particular BCC subsets and the tissue microenvironment.

Publication Title

Evaluation of a developmental hierarchy for breast cancer cells to assess risk-based patient selection for targeted treatment.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE117853
Gene expression and methylation profile of Human non-functional Pancreatic neuroendocrine tumors (PanNETs)
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE117851
Gene expression profile of Human non-functional Pancreatic neuroendocrine tumors (PanNETs)
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene expression profiling of PanNETs patients samples were performed to understand genotype to phenotype correlations, novel molecular subtypes and cell of origin

Publication Title

ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact