refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1571 results
Sort by

Filters

Technology

Platform

accession-icon SRP096788
Gene expression analysis of human spinal motor neurons (MN) differentiated from ALS patient derived iPSC
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

iPSC derived from a patient heterozygous for the SOD1 E100G mutation were genome edited to homozygous wild type using the CRISPR-Cas9 system. Both disease and isogenic corrected iPSC were differentiated into spinal motor neurons that were ISL1+ and CHAT+. Gene expression changes in MN were analyzed by RNA-sequencing.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon SRP105671
Liver maturation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression of human liver cells at different developmental stages.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE19820
Expression data from rat pluripotent stem (PS) cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Various pluripotent stem (PS) cells can be isolated from early developing embryos in mouse. Among these, two kinds of PS cells were isolated from mouse blastocysts: conventional embryonic stem (ES) cells with domed morphology that are maintained with LIF and BMP for self-renewal, and FAB-ES cells with flat morphology that need bFGF, activinA and BIO for self-renewal. Here, we report a novel PS cell line from rat blastocysts, which is distinguishable from conventional ES cells but is morphologically similar to mouse epiblast stem cell (EpiSC) lines. We used microarrays to detail the global program of gene expression of rES and rPS.

Publication Title

The heterogeneity and dynamic equilibrium of rat embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-570
Transcription profiling of rat ganglionic eminences and cerebral cortex at embryonic stages E12.5, E14 and E16
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a), Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Gene expression profiling of the medial (MGE), lateral (LGE) and caudal (CGE) ganglionic eminence, and cerebral cortex (CTX) at various embryonic stages (E12.5, E14 and E16).

Publication Title

Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP162300
Vertebrate species Raw sequence reads
  • organism-icon Homo sapiens
  • sample-icon 542 Downloadable Samples
  • Technology Badge Icon

Description

Skeletal stem and progenitor cells from vertebrate species

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87793
EMT blockage is required for mouse nave pluripotent stem cell derivation
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Pluripotency is the differentiation capacity of particular cells exhibited in the early embryo in vivo and embryonic stem (ES) cells have been shown to originate from the inner cell mass (ICM) of an E3.5 blastocyst. Although the potential for ES cells to differentiate into the three germ layers is equated to ICM cells, they differ in the ability to maintain the capacity for self-renewal. Despite several studies on the maintenance of ES cells in the ground state of pluripotency, the precise mechanism of conversion from the ICM to the ES cell remains unclear. Here , we have examined the cell characteristics and expression profile within the intermediate stages of ES cell derivation from the ICM. Gene clustering and ontology (GO) analyses showed a significant change in the expression of epigenetic modifiers and DNA methylation-related genes in the intermediate stages. We have proposed that an epithelial-to-mesenchymal transition (EMT) blockage is required during derivation of mouse ES cells from E3.5 blastocysts. This study suggests a novel mechanistic insight into ES cell derivation and provides a time-course transcriptome profiling resource for the dissection of gene regulatory networks that underlie the transition from ICM to ES cells.

Publication Title

Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43682
Transcriptome of mouse pluripotent embryonic stem cells (mESC) cultured in R2i, 2i, PD and SB conditions
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In this study we have analyzed the global gene expression of nave mouse embryonic stem cells in different culture conditions including R2i (PD0325901+SB431542), 2i (PD0325901+CHIR99021), and also PD0325901+LIF and SB431542+LIF to show the similarities and differences between the conditions in maintaining pluripotency.

Publication Title

Inhibition of TGFβ signaling promotes ground state pluripotency.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE104328
LRH-1/NR5A2 for the treatment of autoimmune diseases
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE94505
Agonistic Activation of LRH-1/NR5A2 To Treat Type 1 Diabetes Mellitus
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Strategy to repress autoimmunity and promote islet beta cell regeneration

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE62846
Regulation of ER Homeostasis and Cell Cycle by Pax4 Enhances -Cell Survival and Protects Mice Against Experimental Autoimmune Diabetes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Strategies to enhance islet b-cell survival and regeneration while refraining inflammation through manipulation of molecular targets would provide means to stably replenish the deteriorating functional b-cell mass detected in both Type 1 and Type 2 Diabetes Mellitus (T1DM and T2DM). Herein we report that over expression of the islet enriched transcription factor Pax4 refrains development of hyperglycemia in the RIP-B7.1 mouse model of T1DM through reduced insulitis, decreased b-cell apoptosis correlating with diminished DNA damage and increased proliferation. Transcriptomics revealed up regulation of genes involved in immunomodulation, cell cycle and ER homeostasis in islets over expressing Pax4 as compared to the T2DM-linked mutant variant Pax4R129W. Pax4 but not Pax4R129W protected islets from thapsigargin-mediated ER-stress apoptosis. Collectively, Pax4 is a critical signaling hub coordinating regulation of distinct molecular pathways resulting in improved b-cell fitness whereas Pax4R129W sensitizes to death under stress. More importantly we highlight potential common pharmacological targets for the treatment of DM.

Publication Title

PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact