refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2997 results
Sort by

Filters

Technology

Platform

accession-icon GSE51815
Gene Body Methylation Directly Increases Gene Expression and is a Therapeutic Target for Genes Upregulated in Cancer
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene body methylation can alter gene expression and is a therapeutic target in cancer.

Sample Metadata Fields

Sex, Cell line, Treatment, Time

View Samples
accession-icon GSE51811
Gene Body Methylation Directly Increases Gene Expression and is a Therapeutic Target for Genes Upregulated in Cancer (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Demethylation treatment reduce gene body methylation as well as gene expression

Publication Title

Gene body methylation can alter gene expression and is a therapeutic target in cancer.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE20978
Activated Notch-induced transcriptional profile modulation in human primary dermal lymphatic endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human Notch1 intracellular domain (NICD) was overexpressed in human primary lymphatic endothelial cells (LECs) for 10 and 24 hours by adenovirus. A GFP-control adenovirus-infected cells (24hours) and uninfected cells were also analysed as controls.

Publication Title

An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE1922
Leukemia study / K562 cell line
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

K562 cell line mock treated or for 24 hours with one micromolar imatinib.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117182
The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE48984
Glutamine sensitivity analysis identifies the xCT antiporter as a common triple negative breast tumor therapeutic target.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A small number of tumor-derived cell lines have formed the mainstay of cancer therapeutic development, yielding drugs with impact typically measured as months to disease progression. To develop more effective breast cancer therapeutics, and more readily understand their potential clinical impact, we constructed a functional metabolic portrait of 46 independently-derived breast tumorigenic cell lines, contrasted with purified normal breast epithelial subsets, freshly isolated pleural effusion breast tumor samples and culture-adapted, non-tumorigenic mammary epithelial cell derivatives. We report our analysis of glutamine uptake, dependence, and identification of a significant subset of triple negative samples that are glutamine auxotrophs. This NCBI GEO submission comprises a small datasest generated to compare the expression profiles of the above nontumorigenic, purified normal and purified pleural effusion samples with 10 established breast cancer-derived cell lines. This dataset was subsequently merged with a previously published expression dataset derived from 45 independent breast cancer derived cell lines (Neve, et al 2006), and analyses contrasting various subsets of the merged dataset were published.

Publication Title

Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19338
Expression profiles of villus and crypt layers of large intestine from C57Bl/6, Apc1638N+/-, and p21-/- mice.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Expression profiles obtained from the villus and crypt layers of murine large intestine can elucidate the process of differentiation undergone by epithelial cells as they migrate from the undifferentiated bottom of the crypt to the villus tip before being shed into the intestinal lumen. This series includes profiles from wild type mice, as well as mice harboring mutations in genes (APC and p21) which play key roles in the differentiation process.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117104
The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression IV
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. ChIP-Seq defined the RARG cistrome which was significantly enriched at active enhancers associated with AR binding sites. Reflecting a significant genomic role for RARG to regulate androgen signaling, RARG knockdown in HPr1-AR cells significantly regulated the magnitude of the AR transcriptome. RARG down-regulation was explained by increased miR-96 in PCa cell and mouse models, and TCGA PCa cohorts. Biochemical approaches confirmed that miR-96 directly regulated RARG expression and function. Capture of the miR-96 targetome by biotin-miR96 identified that RARG and a number of RARG interacting co-factors including TACC1 were all targeted by miR-96, and expression of these genes were prominently altered, positively and negatively, in the TCGA-PRAD cohort. Differential gene expression analyses between tumors in the TCGA-PRAD cohort with lower quartile expression levels of RARG and TACC1 and upper quartile miR-96, compared to the reverse, identified a gene network including several RARG target genes (e.g. SOX15) that significantly associated with worse disease free survival (hazard ratio 2.23, 95% CI 1.58 to 2.88, p=0.015). In summary, miR-96 targets a RARG network to govern AR signaling, PCa progression and disease outcome.

Publication Title

The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE117102
The miR-96 and RARG signaling axis governs androgen signaling and prostate cancer progression II
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARG), are commonly reduced in prostate cancer (PCa). Therefore we sought to establish the cellular and gene regulatory consequences of reduced RARG expression, and determine RARG regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARG levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. ChIP-Seq defined the RARG cistrome which was significantly enriched at active enhancers associated with AR binding sites. Reflecting a significant genomic role for RARG to regulate androgen signaling, RARG knockdown in HPr1-AR cells significantly regulated the magnitude of the AR transcriptome. RARG down-regulation was explained by increased miR-96 in PCa cell and mouse models, and TCGA PCa cohorts. Biochemical approaches confirmed that miR-96 directly regulated RARG expression and function. Capture of the miR-96 targetome by biotin-miR96 identified that RARG and a number of RARG interacting co-factors including TACC1 were all targeted by miR-96, and expression of these genes were prominently altered, positively and negatively, in the TCGA-PRAD cohort. Differential gene expression analyses between tumors in the TCGA-PRAD cohort with lower quartile expression levels of RARG and TACC1 and upper quartile miR-96, compared to the reverse, identified a gene network including several RARG target genes (e.g. SOX15) that significantly associated with worse disease free survival (hazard ratio 2.23, 95% CI 1.58 to 2.88, p=0.015). In summary, miR-96 targets a RARG network to govern AR signaling, PCa progression and disease outcome.

Publication Title

The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE25070
Gene expression analysis of colorectal tumors and matched adjacent non-tumor colorectal tissues.
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

We performed gene expression profiling of 26 colorectal tumors and matched histologically normal adjacent colonic tissue samples using the Illumina Ref-8 whole-genome expression BeadChip. We performed an integrated analysis of promoter DNA methylation and gene expression data to investigate the effects of DNA hypermethylation on gene expression.

Publication Title

Genome-scale analysis of aberrant DNA methylation in colorectal cancer.

Sample Metadata Fields

Sex, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact