refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15750 results
Sort by

Filters

Technology

Platform

accession-icon GSE38064
Expression data of subtypes of inflamed synovia from patients with rheumatoid arthritis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to detail the global program of gene expression underlying differences in the organisation of inflammatory cells classified by the expression of the CD21L and IL-17A genes. Synovia were defined by the expression of the CD21L and IL-17A genes as determined by semi-quantitative PCR.

Publication Title

Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE106535
Gene expression data from colorectal cancers
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

D122p53 mice (a model of D133p53 isoform) are tumour prone, have extensive inflammation and elevated serum IL-6. To investigate the role of IL-6 we crossed 122p53 mice with IL-6 deficient mice. Here we show that loss of IL-6 reduced JAK-STAT signalling, tumour incidence, and metastasis. We also show that D122p53 activates RhoA-ROCK signalling leading to tumour cell invasion which is IL-6 dependent and can be reduced by inhibition of JAK-STAT and RhoA-ROCK pathways. Similarly, we show that 133p53 activates the these pathways, resulting in invasive and migratory phenotypes, in colorectal cancer cells. Gene expression analysis of colorectal tumours showed enrichment of GPCR signalling associated with D133TP53 mRNA. Patients with elevated D133TP53 mRNA levels had a shorter disease free survival. Our results suggest that D133p53 promotes tumour invasion by activation of the JAK-STAT and RhoA-ROCK pathways and that patients whose tumours have high D133p53 may benefit from therapies targeting these pathways.

Publication Title

∆133p53 isoform promotes tumour invasion and metastasis via interleukin-6 activation of JAK-STAT and RhoA-ROCK signalling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18795
Expression data from zebrafish embryos homozygous mutant for the cohesin subunit Rad21
  • organism-icon Danio rerio
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Rad21 is a subunit of cohesin. The main function of cohesin is to hold replicated chromosomes together until cells divide, but it also plays a role in gene expression. To find out which genes might be regulated by cohesin, a study was conducted to look for global changes in gene expression in zebrafish embryos lacking cohesin component Rad21.

Publication Title

Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE27569
Expression data from zebrafish depleted of Esco2
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Our study in zebrafish is the first to use an animal model to understand the biology of the developmental disorder Roberts Syndrome (RBS). RBS is caused by mutations in the ESCO2 gene.

Publication Title

A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE28014
Identification of genes associated with lens regeneration from the cornea in Xenopus laevis tadpoles
  • organism-icon Xenopus laevis
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented contact between the cornea and the vitreous humour that occurs following lens removal. The identity of this trigger is unknown. Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and Pitx transcription factors in this process. Pluripotency genes, in contrast, are not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Furthermore, several genes from the array were expressed in the forming lens during embryogenesis. One of these, nipsnap1, is a known direct target of BMP signalling. We suggest that, as with tail regeneration, activation of multiple developmental signalling pathways could drive lens regeneration from the cornea.

Publication Title

Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16249
siRNA-mediated knockdown of MITF and PAX3 in metastatic melanoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The transcription factors PAX3 and MITF are required for the development of the neural crest and melanocyte lineage, and both proteins play important roles in melanoma cell growth and survival. PAX3 transcriptionally activates MITF expression during neural crest development, but the relationship between these transcription factors during melanocyte development and in melanoma cells is currently poorly understood. This study aimed to further our understanding of the interaction between transcriptional networks controlled by PAX3 and MITF by assessing the effect of siRNA-mediated knockdown of PAX3 and MITF in metastatic melanoma cell lines. The goals of this study were to determine (i) if PAX3 is required for maintaining expression of MITF in melanoma and melanocyte cell lines; (ii) whether PAX3 and MITF independently, or redundantly, influence growth and survival in melanoma cell lines; and (iii) to investigate the respective roles of PAX3 and MITF expression in melanoma cell differentiation.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE61562
Murine Norovirus Effect on Cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Changes in gene expression on MNV infection of RAW264.7 cells

Publication Title

Murine norovirus replication induces G0/G1 cell cycle arrest in asynchronously growing cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE50093
Characterization of the chemokine response of RAW264.7 cells to infection by murine norovirus
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

RAW264.7 macrophages infected with MNV-1 and mock infected gene expression measured by microarray.

Publication Title

Characterization of the chemokine response of RAW264.7 cells to infection by murine norovirus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9813
Comparison of regenerating and non regenerating transgenic stage 52 Xenopus hind limbs
  • organism-icon Xenopus laevis
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Description

Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus in which the BMP inhibitor Noggin can be over-expressed at any time during development. We have previously shown that activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. In the current study, we have taken advantage of this transgenic line to directly compare gene expression in same stage regenerating vs. non-regenerating hind limb buds. Using Affymetrix gene chip analysis, we have identified genes whose expression levels are linked to regenerative success. These include the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish). Analysis of overrepresented Gene Ontology functional groupings suggests that successful regeneration in the Xenopus hind limb depends on induction of stress response pathways. Furthermore, as expected, genes involved in embryonic development and growth are also significantly over-represented in regenerating early hind limb buds.

Publication Title

Identification of genes associated with regenerative success of Xenopus laevis hindlimbs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22253
Gene expression and genotype in normal heart
  • organism-icon Homo sapiens
  • sample-icon 105 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide association studies have identified a small region at chromosome 9p21.3 strongly associated with coronary heart disease risk. The region contains no protein-coding genes and the mechanism underlying its association with heart disease is unknown. We investigated associations between rs1333049, a single nucleotide polymorphism representing the 9p21.3 locus, and levels of cardiac gene expression in myocardial tissue from donors with no documented history of heart disease.

Publication Title

The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues.

Sample Metadata Fields

Sex, Age

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact