refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16611 results
Sort by

Filters

Technology

Platform

accession-icon GSE33070
Adipose tissue gene expression associated with weight gain in kidney transplant recipients
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to investigate the association of gene expression profiles in subcutaneous adipose tissue with percent of total body weight change in 26 kidney transplant recipients.

Publication Title

Expression levels of obesity-related genes are associated with weight change in kidney transplant recipients.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE119524
Expression data from Tsc2-null cell line ELT3, and the ELT3-derivative rapamycin-resistant cell line ELT3-245
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Clariom S Assay (clariomsrat)

Description

TSC2 loss leads to mTORC1 hyperactivation in Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM), and rapamycin or analogues Life-long use of rapalogs are proposed for the treatment of Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM), which increases the chances for the development of rapalog resistance. Moreover, a percentage of patients do not respond to rapalogs. Understanding the signaling perturbations leading to rapalog resistance in TSC and LAM is critical for the development of better therapeutic strategies. We developed a Tsc2-null cell line, ELT3-245, that is highly tumorigenic and are refractory to rapamycin treatment.

Publication Title

No associated publication

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE36674
Expression data for mouse hypothalamus
  • organism-icon Mus musculus
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Strain differences in gene expression in the hypothalamus of BXD recombinant inbred mice

Publication Title

Sex-specific modulation of gene expression networks in murine hypothalamus.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE37450
Molecular Phenotyping of Immune Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse a model for human type 1 diabetes (T1DM). The molecular events leading to insulitis are poorly understood. Since TIDM is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease.

Publication Title

Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE46600
Transcriptome and Molecular Pathways Analysis of CD4 T-Cells from Young NOD Mice
  • organism-icon Mus musculus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Type 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.

Publication Title

Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE8690
Microarray analysis identifies distinct subpopulations of arthritic mice deficient for interleukin 1 receptor antagonist
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Rheumatoid arthritis (RA) is a heterogeneous disease with clinical and biological polymorphisms. However, little is known about baseline molecular variations among individual RA patients. The purpose of this study was to address this issue using F2 intercross mice generated from arthritis-prone BALB/c and arthritis-resistant DBA/1 mice deficient for interleukin 1 receptor antagonist (Il1rn). Two distinct subpopulations of arthritic mice were identified in the 38 mice studied. One subgroup of diseased mice was characterized by myeloid cell dominant inflammation, whereas the other was mainly associated with increased anti-apoptotic activities of inflammatory cells.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8166
Transcriptome Profile of the Vascular Endothelial Cell Response to Candida albicans
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We perform microarray analysis of HUVECs upon stimulation with virulent wildtype C. albicans strain SC5314 or its efg1/efg1 cph1/cph1 hyphal-deficient derivative strain CAN34 to compare the gene expression profiles elicited from HUVECs in response to these strains. In addition, these responses are compared to that of TNF-alpha induced responses to determine which responses are Candida-specific.

Publication Title

Transcriptome profile of the vascular endothelial cell response to Candida albicans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34389
Cell leukostasis during organ-targeted chemotherapy in human retinal endothelial cells and rhesus macaques endothelial cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Intra-ophthalmic artery chemotherapy triggers vascular toxicity through endothelial cell inflammation and leukostasis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE7657
Identification of phase-specific arthritis-related genes in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Rheumatoid arthritis (RA), one of the most common polygenic diseases, is characterized by a chronic, progressive inflammation mainly in joints and has an unknown etiology. Numerous studies have revealed the significance of cytokines TNF and IL-1 in the onset and progression of RA. Due to the complexity of interactions among different cytokines and immune cells, little is known about the precise molecular mechanisms underlying RA. In this study, oligonucleotide microarray analysis and a mouse model of RA, IL-1 receptor antagonist deficient mice were used to address this issue. Two hundred and ninety transcripts were found to be dysregulated greater than or equal to 2-fold in the diseased mice. Phase-specific gene expression changes were identified, including early increase and late decrease of heat shock protein coding genes and Cyr61. Moreover, common gene expression changes were also observed, especially the upregulation of paired-Ig-like receptor A (Pira) in both early and late phases of arthritis. We conclude that common and distinct gene expression change patterns that were identified globally may represent novel opportunities for better control of RA through early diagnosis and development of alternative therapeutic strategies.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE81820
Motor phenotypes and molecular networks associated with germline deficiency of Ciz1
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

A Ciz1 gene-trap knock-out (KO) mouse model was generated to examine the functional role(s) of Ciz1 in the sensorimotor nervous system and contributions of Ciz1 to cell-cycle control in the mammalian brain.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact