refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE22578
Wilms Tumor-1 (WT-1) and its candidate target genes in gliomagenesis
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

WT-1 is a zinc-finger transcription factor with important roles during development. WT-1 is associated with the development of tumors of varied origins.

Publication Title

No associated publication

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE33342
Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This study aimed at characterizing the effect of the innate immune agonist, dsRNA, on ovarian cancer cell lines and ascites-derived ovarian cancer cells.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE24433
Mesenchymal stem cells in local fat depots stimulate breast cancer growth, invasion and desmoplasia
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Studies investigating the role of mesenchymal stem cells (MSCs) in mammary carcinogenesis have almost exclusively relied on isolates from bone marrow aspirates or non-breast fat sources often making the general assumption that all MSCs are alike.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE33100
HIF- and non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1 in the adaptive response, however, has not been determined. Here we investigate how HIF-1 influences hypoxic adaptation throughout Drosophila development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in dHIF mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIF and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIF in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs.

Publication Title

HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23336
Expression data from Drosophila melanogaster err mutant animals vs. wild type animals at a mid-second instar larval time
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Cancer cells utilize a unique form of aerobic glycolysis, called the Warburg effect, to efficiently produce the macromolecules required for proliferation. Here we show that a metabolic program related to the Warburg effect is used during normal Drosophila development and regulated by the fly ortholog of the Estrogen-Related Receptor (ERR) family of nuclear receptors. dERR null mutants die as second instar larvae with abnormally low ATP levels, diminished triacylglyceride stores, and elevated levels of circulating sugars. Metabolomic profiling revealed that the pathways affected in these mutants correspond to those used in the Warburg effect. The expression of active dERR protein in mid-embryogenesis triggers a coordinate switch in gene expression that drives a metabolic program supporting the dramatic growth that occurs during larval development. This study suggests that mammalian ERR family members may promote cancer by directing a metabolic state that supports proliferation.

Publication Title

The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact