refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 9785 results
Sort by

Filters

Technology

Platform

accession-icon SRP027561
Saccharomyces cerevisiae strain:Bread strain, Wine strain, Bioethanol strain Transcriptome or Gene expression
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The behavior of yeast cells during industrial processes such as the production of beer, wine and bioethanol has been extensively studied. By contrast, our knowledge about yeast physiology during solid state processes, such as bread dough, cheese or cocoa fermentation remains limited. We investigated changes in the transcriptome of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress response. Further analysis shows that genes regulated by the High Osmolarity Glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress, and that a proper induction of the HOG pathway is critical for an optimal fermentation.

Publication Title

Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20458
Increased leaf size: different means to an end
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16713
Atonal and Senseless perturbations in Drosophila melanogaster eye-antennal imaginal discs.
  • organism-icon Drosophila melanogaster
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The goal of this study is to identify co-expressed genes downstream of Atonal and Senseless. These gene lists are used as candidate target genes (technically: as foreground sets) in computational predictions of cis-regulatory elements using the cisTargetX method (http://med.kuleuven.be/cme-mg/lng/cisTargetX). Together, the gene expression results and cis-regulatory predictions, yield a gene regulatory network underlying the early events in retinal differentiation. Predicted cis-regulatory interactions have been validated extensively in vivo using enhancer reporter assays and genetic perturbations.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15726
Chromosomal duplication in the grandifolia-D mutants of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The number of cells in an organ is a major factor for the determination of organ size. However, genetic basis of cell number determination is not well understood. Three grandifolia-D (gra-D) mutants of Arabidopsis thaliana developed huge leaves containing two- to three-fold increased number of cells of the wild type. Tiling array and microarray analysis of gra-D mutants suggested that genes found in a lower part of chromosome 4 were upregulated, suggesting the occurrence of segmental chromosomal duplications in the gra-D mutants. These region contain positive regulators of cell proliferation such as AINTEGUMENTA (ANT) and cyclin genes such as CYCD3;1.

Publication Title

Impact of segmental chromosomal duplications on leaf size in the grandifolia-D mutants of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15722
Chromosomal duplication in the grandifolia-D mutants of Arabidopsis thaliana, expression data
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The number of cells in an organ is a major factor for the determination of organ size. However, genetic basis of cell number determination is not well understood. Three grandifolia-D (gra-D) mutants of Arabidopsis thaliana developed huge leaves containing two- to three-fold increased number of cells of the wild type. Tiling array and microarray analysis of gra-D mutants suggested that genes found in a lower part of chromosome 4 were upregulated, suggesting the occurrence of segmental chromosomal duplications in the gra-D mutants. These region contain positive regulators of cell proliferation such as AINTEGUMENTA (ANT) and cyclin genes such as CYCD3;1.

Publication Title

Impact of segmental chromosomal duplications on leaf size in the grandifolia-D mutants of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20455
Increased leaf size: different means to an end (experiment 1)
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21629
SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

SHORT-ROOT (SHR) and SCARECROW (SCR) are required for stem cell maintenance in the Arabidopsis thaliana root meristem, ensuring its indeterminate growth. Mutation of SHR and SCR genes results in disorganization of the quiescent center and loss of stem cell activity, resulting in the cessation of root growth. This manuscript reports on the role of SHR and SCR in the development of leaves, which, in contrast to the root, have a determinate growth pattern and lack a persistent stem-cell niche. Our results demonstrate that inhibition of leaf growth in shr and scr mutants is not a secondary effect of the compromised root development, but is caused by a direct effect on cell division in the leaves: a reduced cell division rate and early exit of proliferation phase. Consistent with the observed cell division phenotype, the expression of SHR and SCR genes in leaves is closely associated with cell division activity in most cell types. The increased cell cycle duration is due to a prolonged S-phase duration, which is mediated by up-regulation of cell cycle inhibitors known to restrain the activity of the transcription factor, E2Fa. Therefore, we conclude that, in contrast to their specific role in cortex/endodermis differentiation and stem cell maintenance in the root, SHR and SCR primarily function as general regulators of cell proliferation in leaves.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20456
Increased leaf size: different means to an end (experiment 2)
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41439
Gene expression comparison between human embryonic stem cell lines with a normal karyotype and after acquiring a duplication of 20q11.21
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Since the introduction of high-resolution molecular cytogenetic methods for the screening for chromosomal abnormalities in human embryonic stem cells (hESC), numerous laboratories worldwide have reported the gain of 20q11.21 as a recurrent mutation. Recently, in a large joint study, the International Stem Cell Initiative (ISCI) screened 125 hESC lines worldwide and found this aberration in over 20% of the lines. In our laboratory, we found an increased copy number of 20q11.21 in four hESC lines, VUB01, VUB02, VUB03 and VUB07. We first carried out Affymetrix HG-U133-Plus2 gene-expression microarray analysis of pairs of the mutant and wild type sublines. We identified a small group of very significantly deregulated genes, but none of them were located in the region of duplication. Validation of these results by qRT-PCR revealed that CHCHD2 and TRPC6 were most consistently deregulated.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon E-TABM-566
Transcription profiling by array of Arabidopsis mutant for ron1
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transcription profiling of Arabidopsis mutant ron1-1 vs the wild type Ler

Publication Title

The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact