refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-1344
Transcription profiling of Arabidopsis plants grown under diurnal conditions and transferred to cold conditions at different times of day to identify factors influencing cold-responsive genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis plants growing under diurnal conditions were transferred to cold of approximately one day duration, starting at different times of the day. All comparisons are of unreplicated pairs and are thus not designed to identify cold-responsive gens in isolation but are rather to supplement existing publicly available data. The overall aim was to use a diverse set of experiments to see which factors have the greatest influence on the identity of cold-responsive genes.

Publication Title

Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon E-MEXP-1345
Transcription profiling of Arabdiposis plants before and after cold treatment using spike-in controls to allow measurement of absolute mRNA expression at the global level
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

To address the neglected possibility for global mRNA changes in microarray experiments we developed a simple method to generate external controls for Affymetrix microarrays to allow these platforms to measure absolute mRNA expression at the global level. We used publicly available data to select probesets that never detect endogenous transcripts, and used PCR and IVT to generate synthetic mRNAs corresponding to them. After quality control and testing, these control transcripts were spiked into total RNA samples from plants before and after 24 h of cold treatment. Due to changes in the proportion of mRNA, these data reveal intensity-dependent bias in expression estimates based on standard all-gene normalizations. When not accounted for, this leads to false classification of the differential expression for thousands of genes.

Publication Title

Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon E-MEXP-1360
Transcription profiling of Arabidopsis rosettes from plants over-expressing OBP1 to identify candidate target genes
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In order to identify candidate target genes of the OBP1 (At3g50410) transcription factor we used dexamethasone inducible system (Lloyd et al, 1994). A single inducible over-expression line was compared to an empty vector control line 10h after DEX induction to identify candidate genes that were confirmed by quantitative RT-PCR.

Publication Title

The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact