refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13717 results
Sort by

Filters

Technology

Platform

accession-icon GSE43653
Expression data from endometrial carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

some genes associated with cell growth, cell differentiation, meiosis, migration, and apoptosis are regulated in ECC-1 after DEHP exposure.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE119747
Comparison of enteroendocrine cells and pancreatic -cells using gene expression profiling and insulin gene methylation
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

In this study, similarities between EECs and -cells were evaluated in detail. To obtain specific subtypes of EECs, cell sorting by flow cytometry was conducted from STC-1 cells (a heterogenous EEC line), and each single cell was cultured and passaged. Five EEC subtypes were established according to hormone expression, measured by quantitative RT-PCR and immunostaining: L, K, I, G and S cells expressing glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, cholecystokinin, gastrin and secretin, respectively.

Publication Title

Comparison of enteroendocrine cells and pancreatic β-cells using gene expression profiling and insulin gene methylation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34139
Molecular pathology of the ARF induced by choline deficiency and of the protection afforded by fish oil
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Male weanling Wistar rats from the Animal Facility at the Center for Experimental and Applied Pathology were divided into 4 groups and fed the following diets: 1) choline-deficient diet with VO [corn and hydrogenated oils) as lipids (CDVO); 2) choline-supplemented diet with VO as lipids (CSVO); 3) choline-deficient diet with MO as lipid (CDMO); and 4) choline-supplemented diet with MO as lipid (CSMO). Authors have adhered to appropriate NIH Guide for the Care and Use of Laboratory Animals. It is known that female rats are more resistant than male rats to AKI. Animals were sacrificed after receiving the experimental diets for 6 days. The left kidney was fixed in formaldehyde-buffer and stained with hematoxiline-eosin for histopathological analysis. The right kidney was cryopreserved for microarray analysis. Cryopreserved kidney was wrapped with aluminum foil and broken with a hammer previously wrapped with tape paper on a counter covered in aluminum. The pieces of the kidney were located in a mortar with liquid nitrogen to keep cryopreservation and were pulverized with a pestle. Nitrogen was added as it evaporated. The tissue was broken up to be completely pulverized. Powder was placed with a spatula in a cryotube supported on a dry ice with a layer of aluminum above. Before proceeding with another sample and to avoid contamination, the mortar, the pestle and the spatula were washed with tap water, distilled water and then alcohol. The tape of the hammer, the aluminum on the counter and the latex gloves were also replaced by new ones. Total RNA was purified from 30 milligrams of frozen rat kidney pools, using RNeasy Mini Kit [Qiagen GmbH, Hilden, Germany) according to the manufacturer's instructions. The biological concentration, integrity and quality of the RNA obtained were performing using NanoDrop 2000c (Thermo Fisher Scientific, Delaware, USA) and RIN (RNA Integrity Number). Five hundred nanograms of total RNA were processed and hybridized to Affymetrix GeneChip Rat Gene 1.0 ST Array (Affymetrix Inc, Singapore, Singapore), according to Ambion WT Expression Kit instructions (Ambion Inc, Texas, USA). Total RNA obtained during the tissue extraction was processed to obtain a double strand cDNA. After that we performed a in-vitro transcripition to generate antisence cRNA (aRNA). This aRNA was used to generate a single-stranded DNA (ss-DNA) using random primers and the dUTP +dNTP mix. The resulting single-stranded DNA (ss-DNA) containing the unnatural uracilbase is then treated with Uracil DNA Glycosylase, which specifically removes the uracilresidue from the ss-DNA molecules. In the same reaction, the APE 1 enzyme then cleaves the phosphodiester backbone where the base is missing, leaving a 3-hydroxyland a 5-deoxyribose phosphate terminus. Before this prosses, shorts ss-DNA fragments were labeled by terminal deoxynucleotidyl transferase (TdT) that covalently linked the 3-hydrosyl phosphate terminus whit Biotin Allonamide Triphosphate. The GeneChip Rat Gene 1.0 ST Array enables whole-genome, gene-level expression studies for well-characterized genes. It is a single GeneChip-brand array comprised of more than 722 254 unique 25-mer oligonucleotide features accounting for more than 27 342 gene-level probe sets. Results were scanned with GeneChip Scanner 3000 7G (Affymetrix Inc, Tokyo, Japan), and normalized by RMA algorithm using Affymetrix Expression Console Software. In addition, call values were retrieved by MAS5 algorithm, and only genes with a p (present) call value were used in the analysis. Differentially expressed genes were identified using limma (www.bioconductor.org) and p adjusted values and absolute log fold change greater than 1.5 were used for gene selection.

Publication Title

Molecular pathology of acute kidney injury in a choline-deficient model and fish oil protective effect.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE20899
Expression data from ES cell-derived motoneuron
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neural formation from ES cells provides a novel system for studying axonogenesis in projection neurons.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE135068
Elucidation of Ras homologous A: Systematic approach to identify potential signaling in gastric cancer
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Previously, we identified Ras homologous A (RHOA) as a major signalling hub in gastric cancer (GC), the third-most common cause of cancer death in the world, prompting us to rationally design an efficacious inhibitor of this oncogenic GTPase. Here, based on that previous work, we extend those computational analyses, and in silico modeling approaches, to further pharmacologically optimize anti-RHOA hydrazide derivatives for greater anti-GC potency. Two of these, JK-136 and JK-139, potently inhibited cell viability and migration/invasion of GC cell lines, and mouse xenografts, diversely expressing RHOA. Moreover, JK-136’s binding affinity for RHOA was >140-fold greater than Rhosin, a nonclinical RHOA inhibitor. Network analysis of JK-136/139-associated transcriptomes showed different functional contexts, compared to those following treatment with Rhosin. We strongly assert that identifying and targeting oncogenic signalling hubs, such as RHOA, represents an emerging strategy for the design, characterization, and translation of new antineoplastics, against gastric and other cancers.

Publication Title

Rational design of small molecule RHOA inhibitors for gastric cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26942
Characterization of gene expression profiles of gastric cancer
  • organism-icon Homo sapiens
  • sample-icon 217 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE39791
Hepatic regeneration gene expression signature predicts late recurrence of hepatocellular carcinoma
  • organism-icon Homo sapiens
  • sample-icon 144 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

While we and others have uncovered and validated several genomic predictors for metastatic recurrences, a molecular or genomic predictor that can reliably identify high-risk patients for late de novo recurrence has not been firmly established. We analyzed previously reported gene expression data from human livers that underwent partial hepatectomy or transplantation, which were representative physiological conditions that trigger liver regeneration signals. We generated gene expression data from tumor and matched non-tumor surrounding tissues of 72 hepatocellular carcinoma (HCC) patients who underwent surgical resection as the primary treatment. We used these gene expression data to develop a new prognostification model for recurrence of HCC after surgery.

Publication Title

Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE13898
Robust prognostic biomarkers for EAC identified by systems-level characterization of tumor transcriptome
  • organism-icon Homo sapiens
  • sample-icon 118 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Despite continual efforts to rationalize a prognostic stratification of patients with esophageal adenocarcinoma (EAC) before treatment, current staging system only shows limited success owing to the lack of molecular and genetic markers that reflect prognostic features of the tumor. To develop molecular predictors of prognosis, we used systems-level characterization of tumor transcriptome. Using DNA microarray, genome-wide gene expression profiling was performed on 75 biopsy samples from patients with untreated EAC. Various statistical and informatical methods were applied to gene expression data to identify potential biomarkers associated with prognosis. Potential marker genes were validated in an independent cohort using quantitiative RT-PCR to measure gene expression. Distinct subgroups of EAC were uncovered by systems-level characterization of tumor transcriptome. We also identified a six-gene expression signature that could be used to predict overall survival (OS) of EAC patients. In particular, expression of SPARC and SPP1 was a strong independent predictor of OS, and a combined gene expression signature with these two genes was associated with prognosis (P < 0.024), even when all relevant pathological variables were considered together in multivariate Cox hazard regression analysis. Our findings suggest that molecular features reflected in gene expression signatures may dictate the prognosis of EAC patients, and these gene expression signatures can be used to predict the likelihood of prognosis at the time of diagnosis and before treatment.

Publication Title

Prognostic biomarkers for esophageal adenocarcinoma identified by analysis of tumor transcriptome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26901
Characterization of gene expression profiles of gastric cancer in Kosin University cohort
  • organism-icon Homo sapiens
  • sample-icon 109 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Clinical heterogeneity of gastric cancer reflected in unequal outcome of treatment is poorly defined in molecular level, and molecular subtypes and their associated biomarkers have not been established to improve prognostification and treatment of gastric cancer. Using microarray technologies, we analyzed gene expression profiling data from gastric cancer patients and uncovered potential prognostic subtypes and identify gene expression signature associated with prognosis and response to adjuvant chemotherapy.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE26899
Characterization of gene expression profiles of gastric cancer in the Korea University cohort
  • organism-icon Homo sapiens
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Clinical heterogeneity of gastric cancer reflected in unequal outcome of treatment is poorly defined in molecular level, and molecular subtypes and their associated biomarkers have not been established to improve prognostification and treatment of gastric cancer. Using microarray technologies, we analyzed gene expression profiling data from gastric cancer patients and uncovered potential prognostic subtypes and identify gene expression signature associated with prognosis and response to adjuvant chemotherapy.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact