refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 567 results
Sort by

Filters

Technology

Platform

accession-icon GSE43927
Exposure to Propylthiouracil in Pregnant Mice Potentiates the Transcriptional Response to Thyroid Hormone in the Fetal Cerebral Cortex
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Although the effects of thyroid hormones (TH) on the brain development have been extensively studied perinatally, effects of TH of maternal origin on the fetal brain development have been largely unexplored. We applied a high throughput study on the mouse models with aberrant TH levels on gestation day (GD) 16, before the onset of fetal thyroid function. Although 3 day treatment with methimazole (MMI) and perchlorate significantly decreased TH levels in fetal cerebral cortex, few changes in the abundance of mRNA were revealed by the microarray analysis. Injection TH to dams 12 hours before sacrifice on GD 16 induced 161 genes significantly changed in fetal cortex. Nine out of 10 selected genes were confirmed with RT-PCR, including known TH responsive gene Klf9 and other novel TH responsive genes such as Appbp2, Ppap2b and Fgfr1op2. TH regulation of the expression of these genes was also confirmed with cultured N2a cells. Thyroid responsive elements (TREs) in the promoters of these genes were identified using electrophoresis mobility shift assay. TH effect on microRNA (miRNA) expression in developing cortex on GD 16 and postnatal day (PND) 15 was investigated with microarray and RT-PCR. Some of miRNAs and precursors decreased in fetal cortex from the dams injected with TH on GD 16, including miR-16 and miR-106. Using 3 untranslate region reporter vector, we identified Klf9 is one of the target genes of miR-106, while Ppap2b is the target of miR-16. These results indicated that TH regulation on gene expression could through TR-TRE interaction and through regulating target miRNA expression. This study is the first report to identify TH responsive genes and miRNAs genome wide in the early fetal brain; it provides evidence to further understand the mechanism of TH effect on brain development.

Publication Title

Transient Maternal Hypothyroxinemia Potentiates the Transcriptional Response to Exogenous Thyroid Hormone in the Fetal Cerebral Cortex Before the Onset of Fetal Thyroid Function: A Messenger and MicroRNA Profiling Study.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16420
Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense
  • organism-icon Populus tremula x populus alba
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16417
Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense: WRKY23-overexpressor
  • organism-icon Populus tremula x populus alba
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

To investigate the function of poplar WRKY23, we generated PtWRKY23-overexpressing and -underexpressing (RNAi) plants. Transgenic plants were inoculated with Melampsora rust or mock-inoculated for assessment of rust-resistance and for gene expression profiling using the poplar Affymetrix GeneChip to study the consequences of PtWRKY23 overexpression and underexpression. Transcriptome analysis of PtWRKY23 overexpressors revealed a significant overlap with the Melampsora-infection response. Transcriptome analysis also indicated that PtWRKY23 affects redox homeostasis and cell wall-related metabolism.

Publication Title

Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16419
Expression profiling and functional analysis of poplar WRKY23 reveals a regulatory role in defense: WRKY23-RNAi
  • organism-icon Populus tremula x populus alba
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

To investigate the function of poplar WRKY23, we generated PtWRKY23-overexpressing and -underexpressing (RNAi) plants. Transgenic plants were inoculated with Melampsora rust or mock-inoculated for assessment of rust-resistance and for gene expression profiling using the poplar Affymetrix GeneChip to study the consequences of PtWRKY23 overexpression and underexpression. Transcriptome analysis of PtWRKY23 overexpressors revealed a significant overlap with the Melampsora-infection response. Transcriptome analysis also indicated that PtWRKY23 affects redox homeostasis and cell wall-related metabolism.

Publication Title

Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14204
25-hydroxycholesterol effects on human hepatocyte metabolism and the antiviral state it conveys against the HCV
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Hepatitis C virus (HCV) infection is a global health problem. A number of studies have implicated a direct role of cellular lipid metabolism in the HCV life cycle and inhibitors of the mevalonate pathway have been demonstrated to result in an antiviral state within the host cell. Transcriptome profiling was also conducted on Huh-7 human hepatoma cells bearing subgenomic HCV replicons with and without treatment with 25-hydroxycholesterol (25-HC), an inhibitor of the mevalonate pathway that alters lipid metabolism, to assess metabolic determinants of pro- and antiviral states within the host cell.

Publication Title

Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47745
Expression data from intestine of HDAC1 and HDAC2 conditionally mutated mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Acetylation and deacetylation of histones and other proteins depend on the opposing activities of histone acetyltransferases and histone deacetylases (HDACs), leading to either positive or negative gene expression changes. The use of HDAC inhibitors (HDACi) has uncovered a role for HDACs in the control of proliferation, apoptosis and inflammation. However, little is known of the roles of specific HDACs in intestinal epithelial cells (IEC). We investigated the consequences of ablating both Hdac1 and Hdac2 in murine IECs gene expression.

Publication Title

HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54785
The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from DSS-induced murine colitis. While tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal Disease Activity Index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation

Publication Title

The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE60003
Expression data from Control or ShSuz12 rat Intestinal epithelial cells IEC-6
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Polycomb-group proteins form multimeric protein complexes involved in transcriptional silencing. The Polycomb Repressive complex 2 (PRC2) contains the Suppressor of Zeste-12 protein (Suz12) and the histone methyltransferase Enhancer of Zeste protein-2 (Ezh2). This complex, catalyzing the di- and tri-methylation of histone H3 lysine 27, is essential for embryonic development and stem cell renewal. However, the role of Polycomb-group protein complexes in the control of the intestinal epithelial cell (IEC) phenotype is not known. We investigated the impact of Suz 12 depletion on gene expression in IEC-6 cells.

Publication Title

The histone H3K27 methylation mark regulates intestinal epithelial cell density-dependent proliferation and the inflammatory response.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE108268
Expression data from Huh7.5 hepatoma cells transfected with 100 nM miR-7 mimic
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Our work demonstrated that PPAR- regulates miR-7, a microRNA which regulates SREBP1 signaling.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE28973
Differential transcriptome analyses of three wheat genotypes in their response to Fusarium Head Blight and trichothecenes
  • organism-icon Triticum aestivum
  • sample-icon 142 Downloadable Samples
  • Technology Badge Icon Affymetrix Wheat Genome Array (wheat)

Description

Fusarium Head Blight (FHB) is a disease of wheat and other cereal crops, where Fusarium graminearum and related species infects the wheat inflorescence during and post-anthesis. The fungus produces trichothecene toxins that accumulate in the grain of infected head, and are required for disease spread. Microarrays were used to observe differential gene expression in the uninoculated spikelets of FHB-challenged wheat spikes in three wheat genotypes. A summary of our findings will be published in Plant Pathology.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact